首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25295篇
  免费   194篇
  国内免费   920篇
测绘学   1427篇
大气科学   2019篇
地球物理   4753篇
地质学   11836篇
海洋学   1061篇
天文学   1879篇
综合类   2163篇
自然地理   1271篇
  2023年   2篇
  2022年   5篇
  2021年   13篇
  2020年   14篇
  2019年   20篇
  2018年   4773篇
  2017年   4050篇
  2016年   2602篇
  2015年   273篇
  2014年   112篇
  2013年   59篇
  2012年   1028篇
  2011年   2776篇
  2010年   2052篇
  2009年   2370篇
  2008年   1940篇
  2007年   2413篇
  2006年   98篇
  2005年   243篇
  2004年   445篇
  2003年   445篇
  2002年   285篇
  2001年   77篇
  2000年   77篇
  1999年   30篇
  1998年   40篇
  1997年   13篇
  1996年   11篇
  1995年   10篇
  1994年   6篇
  1993年   13篇
  1992年   7篇
  1991年   9篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   2篇
  1985年   7篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   23篇
  1980年   19篇
  1978年   1篇
  1976年   7篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
  1964年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 × 108 cells g−1 equivalent to 8.7 and 38.7 μgC g−1) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.  相似文献   
172.
Numerical study about vortex-induced vibration(VIV) related to a flexible riser model in consideration of internal flow progressing inside has been performed.The main objective of this work is to investigate the coupled fluid-structure interaction(FSI) taking place between tensioned riser model,external shear current and upward-progressing internal flow(from ocean bottom to surface).A CAE technology behind the current research which combines structural software with the CFD technology has been proposed.According to the result from dynamic analysis,it has been found that the existence of upward-progressing internal flow does play an important role in determining the vibration mode(/dominant frequency),vibration intensity and the magnitude of instantaneous vibration amplitude,when the velocity ratio of internal flow against external current is relatively high.As a rule,the larger the velocity of internal flow is,the more it contributes to the dynamic vibration response of the flexible riser model.In addition,multi-modal vibration phenomenon has been widely observed,for asymmetric curvature along the riser span emerges in the case of external shear current being imposed.  相似文献   
173.
A pattern of slick streaks winding into a spiral, known as a spiral eddy, was identified in 5 images taken by the ERS-1/2 synthetic aperture radar (SAR) in Mutsu Bay (Japan); dynamic and kinematic models of these spiral eddies have been proposed. Common characteristics of the five spiral eddies are: 1) an eddy diameter of about 15 km; 2) their location in the western part of the bay; and 3) their cyclonic direction of rotation. Moreover, the wind conditions over the bay were common: prior to acquiring the images, a strong easterly wind continued blowing for more than one day. The wind field on the bay is known to be orographically steered and has strong windstress vorticity, which generates cyclonic circulation. The diameter and location of the circulation simulated with a numerical ocean model corresponded well to those of the identified spiral eddies. Based on these facts, we propose a dynamic model for the movement of a slick streak, and a kinematic model for the formation of a spiral eddy. We have assumed calm air, a microlayer and seawater with a cyclonic circulation in the dynamic model. The balance of forces is established in the microlayer among the frictional force from the seawater, the frictional force from the calm air, the gravitational force, and the Coriolis force. As a result, the velocity vector of the microlayer deflects slightly towards the center of the cyclonic circulation. We have assumed a point source of the microlayer in the kinematic model. The shapes of a slick streak simulated with the models agree well with the identified patterns in the SAR images.  相似文献   
174.
In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media.  相似文献   
175.
An irradiance inversion model to estimate the in situ absorption coefficient of seawater has been developed for the Ultraviolet-A (UVA) wavelength domain. Input parameters are sun angle and the up-and downward planar irradiances measured for at least two depths. The present method does not require seawater to be sampled, and is a discrete wavelength method which returns the absorption coefficient at a given wavelength from the irradiances measured at that wavelength without assuming a spectral shape of any optical properties a priori. Comparison between the model results and spectrophotometric measurements shows that the model is practically useful when cloud cover in the atmosphere is ≤ 50%. According to the present method, measurements of the irradiances enable simultaneous observation of the in situ underwater UVA radiation level and the absorption capacity of bulk seawater using a radiometer.  相似文献   
176.
As reported in former studies, temperature observations obtained by expendable bathythermographs (XBTs) and mechanical bathythermographs (MBTs) appear to have positive biases as much as they affect major climate signals. These biases have not been fully taken into account in previous ocean temperature analyses, which have been widely used to detect global warming signals in the oceans. This report proposes a methodology for directly eliminating the biases from the XBT and MBT observations. In the case of XBT observation, assuming that the positive temperature biases mainly originate from greater depths given by conventional XBT fall-rate equations than the truth, a depth bias equation is constructed by fitting depth differences between XBT data and more accurate oceanographic observations to a linear equation of elapsed time. Such depth bias equations are introduced separately for each year and for each probe type. Uncertainty in the gradient of the linear equation is evaluated using a non-parametric test. The typical depth bias is +10 m at 700 m depth on average, which is probably caused by various indeterminable sources of error in the XBT observations as well as a lack of representativeness in the fall-rate equations adopted so far. Depth biases in MBT are fitted to quadratic equations of depth in a similar manner to the XBT method. Correcting the historical XBT and MBT depth biases by these equations allows a historical ocean temperature analysis to be conducted. In comparison with the previous temperature analysis, large differences are found in the present analysis as follows: the duration of large ocean heat content in the 1970s shortens dramatically, and recent ocean cooling becomes insignificant. The result is also in better agreement with tide gauge observations. On leave from the Meteorological Research Institute of the Japan Meteorological Agency.  相似文献   
177.
Multidisciplinary oceanic investigation was undertaken in Aug–Sep. 2003 along a transect from Northwestern (Busan, Korea) to Southeastern Pacific (Talcahuano, Chile) to understand the physical, chemical and biological features in the surface water, and to depict their interaction with the atmosphere. Among the twenty parameters measured, we describe the physical, chemical and biological features. Physico-chemical data were analyzed in conjunction with the geographic position and yielded 7 peculiar surface water masses. The first water mass (28.4°N, 130.8°E to 21.5°N, 139.5°E) was warm and low in phosphate and nitrate content, and high in silicate. The concentration of phytoplankton pigment was one of the lowest. The second (20.4°N, 140.7°E to 2.2°S, 162.9°E) was the warmest and the least saline. Nitrate and phosphate concentration were one of the lowest. Chlorophyll a (Chl a) concentration was the lowest among the surface waters. The third (3.4°S, 164.0°E to 14.5°S, 173.3°E) was warm. Nitrate concentration was the lowest. CHL-a, peridinin (Perid), violaxanthin (Viola), zeaxanthin (Zea), chlorophyll-b (Chl b) and β-CAR were abundant. The fourth (18.6°S, 177.5°E to 31.8°S, 123.9°W) was saline and poor in nutrient concentration. The contributions of 19′-butanoyloxyfucoxanthin (But-fuco), 19′-hexanoyloxyfucoxanthin (Hex-fuco), and CHL b to CHL a were non-negligible. The fifth (32.4°S, 122.1°W to 33.8°S, 117.2°W) was relatively cold and well oxygenated. Concentration of Fuco, But-fuco, Hex-fuco and Chl b was high. The sixth (34.2°S, 115.4°W to 37.4°S, 92.1°W) was cold, well oxygenated and enriched with phosphate and nitrate. Concentration of phytoplankton pigment was, however, one of the lowest. The seventh, located off the Chilean coast, from 37.2°S, 87.2°W to 36.1°S, 74.1°W was well oxygenated and highly enriched with nitrate and phosphate. Phytoplankton pigments such as Fuco, Perid, But-fico, and Hex-fuco were rich. The 7 surface water masses are partially attributed to Kuroshio Current, North Equatorial Current and North Equatorial Countercurrent, South Equatorial current, South Pacific Subtropical Gyre, South Pacific Current, Subtropical Front and Chilean coastal water. The differences in physicochemical characteristics and the history of the surface water resulted in difference in quantity and composition of the phytoplankton pigment.  相似文献   
178.
We measured potential temperature, salinity, and dissolved oxygen profiles from the surface to the bottom at two locations in the north Ross Sea (65.2°S, 174.2°E and 67.2°S, 172.7°W) in December 2004. Comparison of our data with previous results from the same region reveals an increase in potential temperature and decreases in salinity and dissolved oxygen concentration in the bottom layer (deeper than 3000 m) over the past four decades. The changes were significantly different from the analytical precisions. Detailed investigation of the temperature, salinity, dissolved oxygen and σ 3 value distributions and the bottom water flow in the north Ross Sea suggests a long-term change in water mass mixing balance. That is to say, it is speculated that the influence of cool, saline, high-oxygen bottom water (high-salinity Ross Sea Bottom Water) formed in the southwestern Ross Sea has possibly been decreased, while the influences of relatively warmer and fresher bottom water (low-salinity Ross Sea Bottom Water) and the Adélie Land Bottom Water coming from the Australia-Antarctic Basin have increased. The possible impact of global warming on ocean circulation needs much more investigation.  相似文献   
179.
The gravity-geologic method (GGM) was used to enhance the bathymetry of the East Sea (Sea of Japan) with satellite altimetry-derived free-air gravity anomalies and shipborne depth measurements. By comparison with the bathymetry model of Smith and Sandwell’s (SAS) approach (1994), GGM was found to have an advantage with short wavelength (≤12 km) components, while SAS better predicts longer wavelength (≥25 km) components, despite its dependency on density contrast. To mitigate this limitation, a tuning density contrast of 10.25 g/cm3 between seawater and the seafloor was primarily estimated by the downward continuation method and then validated by the check points method with GGM. Similarly, SAS is limited by the “A” value in low-pass part of the Wiener filter, which defines the effective range of the wavelength components on bathymetry. As a final result, we present an enhanced GGM bathymetry model by integrating all available data.  相似文献   
180.
The central equatorial Pacific is interesting for studying clues to upper mantle processes, as the region lacks complicating effects of continental remnants or major volcanic plateaus. In particular, the most recently produced maps of the free-air gravity field from satellite altimetry show in greater detail the previously reported lineaments west of the East Pacific Rise (EPR) that are aligned with plate motion over the mantle and originally suggested to have formed from mantle convection rolls. In contrast, the gravity field 600 km or farther west of the EPR reveals lineaments with varied orientations. Some are also parallel with plate motion over the mantle but others are sub-parallel with fracture zones or have other orientations. This region is covered by pelagic sediments reaching ~?500–600 m thickness so bathymetry is not so useful for seeking evidence for plate deformation across the lineaments. We instead use depth to basement from three seismic reflection cruises. In some segments of these seismic data crossing the lineaments, we find that the co-variation between gravity and basement depth is roughly compatible with typical densities of basement rocks (basalt, gabbro or mantle), as expected for some explanations for the lineaments (e.g., mantle convection rolls, viscous asthenospheric inter-fingering or extensional deformation). However, some other lineaments are associated with major changes in basement depth with only subtle changes in the gravity field, suggesting topography that is locally supported by varied crustal thickness. Overall, the multiple gravity lineament orientations suggest that they have multiple origins. In particular, we propose that a further asthenospheric inter-fingering instability mechanism could occur from pressure variations in the asthenosphere arising from regional topography and such a mechanism may explain some obliquely oriented gravity lineaments that have no other obvious origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号