首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5952篇
  免费   178篇
  国内免费   62篇
测绘学   123篇
大气科学   503篇
地球物理   1371篇
地质学   1988篇
海洋学   592篇
天文学   957篇
综合类   14篇
自然地理   644篇
  2021年   45篇
  2020年   65篇
  2019年   73篇
  2018年   111篇
  2017年   116篇
  2016年   132篇
  2015年   103篇
  2014年   129篇
  2013年   315篇
  2012年   177篇
  2011年   261篇
  2010年   238篇
  2009年   237篇
  2008年   242篇
  2007年   209篇
  2006年   229篇
  2005年   182篇
  2004年   184篇
  2003年   171篇
  2002年   165篇
  2001年   117篇
  2000年   108篇
  1999年   103篇
  1998年   95篇
  1997年   85篇
  1996年   88篇
  1995年   92篇
  1994年   86篇
  1993年   76篇
  1992年   86篇
  1991年   70篇
  1990年   98篇
  1989年   85篇
  1988年   75篇
  1987年   100篇
  1986年   75篇
  1985年   96篇
  1984年   131篇
  1983年   108篇
  1982年   97篇
  1981年   100篇
  1980年   88篇
  1979年   100篇
  1978年   71篇
  1977年   86篇
  1976年   71篇
  1975年   70篇
  1974年   55篇
  1973年   61篇
  1972年   35篇
排序方式: 共有6192条查询结果,搜索用时 15 毫秒
241.
The results of a theoretical isotope mass balance model are presented for the time dependence of burial and weathering-plus-degassing fluxes within the combined long-term carbon and sulfur cycles. Averaged data for oceanic δ13C and δ34S were entered for every million years from 270 to 240 Ma (middle Permian to middle Triassic) to study general trends across the Permian-Triassic boundary. Results show a drop in the rate of global organic matter burial during the late Permian and a predominance of low values during the early-to-middle Triassic. This overall decrease with time is ascribed mainly to epochs of conversion of high biomass forests to low biomass herbaceous vegetation resulting in a decrease in the production of terrestrially derived organic debris. Additional contributions to lessened terrestrial carbon burial were increased aridity and a drop in sea level during the late Permian which led to smaller areas of low-lying coastal wetlands suitable for coal and peat deposition.Mirroring the drop in organic matter deposition was an increase in the burial of sedimentary pyrite, and a dramatic increase in the calculated global mean ratio of pyrite-S to organic-C. High S/C values resulted from an increase of deposition in marine euxinic basins combined with a decrease in the burial of low-pyrite associated terrestrial organic matter. The prediction of increased oceanic anoxia during the late Permian and early Triassic agrees with independent studies of the composition of sedimentary rocks.Weathering plus burial fluxes for organic carbon and pyrite sulfur were used to calculate changes in atmospheric oxygen. The striking result is a continuous drop in O2 concentration from ∼30% to ∼13% over a twenty million year period. This drop was brought about mainly by a decrease in the burial of terrestrially derived organic matter. but with a possible contribution from the weathering of older organic matter on land. It must have exerted a considerable influence on animal evolution because of the role of O2 in respiration. Some examples are the extinction of many vertebrates, loss of giant insects and amphibians, and the restriction of animals to low elevations. It is concluded that the extinction of plants may have contributed to the extinction of animals.  相似文献   
242.
Worm‐like trace fossils, sometimes of large size, have regularly been reported from the otherwise generally poorly‐fossiliferous Permo‐Triassic continental red beds of the East Devon coast, southwest England. Selected examples are discussed here to outline the difficulties involved in elucidating the true producers of these burrows and interpreting their significance in the local palaeoenvironment.  相似文献   
243.
The Latest Danian Event (LDE, c. 62.1 Ma) is an early Palaeogene hyperthermal or transient (<200 ka) ocean warming event. We present the first deep‐sea benthic foraminiferal faunal record to study deep‐sea biotic changes together with new benthic (Nuttallides truempyi) stable isotope data from Walvis Ridge Site 1262 (Atlantic Ocean) to evaluate whether the LDE was controlled by similar processes as the minor early Eocene hyperthermals. The spacing of the double negative δ13C and δ18O excursion and the slope of the δ18O–δ13C regression are comparable, strongly suggesting a similar orbital control and pacing of eccentricity maxima as well as a rather homogeneous carbon pool. However, in contrast to early Eocene hyperthermals, the LDE exhibits a remarkable stability of the benthic foraminiferal fauna. This lack of benthic response could be related to the absence of threshold‐related circulation changes or better pre‐adaptation to elevated deep‐sea temperatures, as the LDE was superimposed on a cooling trend, in contrast to early Eocene warming.  相似文献   
244.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
245.
Groundwater resources are typically the main fresh water source in arid and semi‐arid regions. Natural recharge of aquifers is mainly based on precipitation; however, only heavy precipitation events (HPEs) are expected to produce appreciable aquifer recharge in these environments. In this work, we used daily precipitation and monthly water level time series from different locations over a Mediterranean region of Southeastern Spain to identify the critical threshold value to define HPEs that lead to appreciable aquifer recharge in this region. Wavelet and trend analyses were used to study the changes in the temporal distribution of the chosen HPEs (≥20 mm day?1) over the observed period 1953–2012 and its projected evolution by using 18 downscaled climate projections over the projected period 2040–2099. The used precipitation time series were grouped in 10 clusters according to similarities between them assessed by using Pearson correlations. Results showed that the critical HPE threshold for the study area is 20 mm day?1. Wavelet analysis showed that observed significant seasonal and annual peaks in global wavelet spectrum in the first sub‐period (1953–1982) are no longer significant in the second sub‐period (1983–2012) in the major part of the ten clusters. This change is because of the reduction of the mean HPEs number, which showed a negative trend over the observed period in nine clusters and was significant in five of them. However, the mean size of HPEs showed a positive trend in six clusters. A similar tendency of change is expected over the projected period. The expected reduction of the mean HPEs number is two times higher under the high climate scenario (RCP8.5) than under the moderate scenario (RCP4.5). The mean size of these events is expected to increase under the two scenarios. The groundwater availability will be affected by the reduction of HPE number which will increase the length of no aquifer recharge periods (NARP) accentuating the groundwater drought in the region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
246.
Mineral‐based pigments have been used for cave paintings and rock art dating as far back as 70–100 ka in Blombos Cave, South Africa. Ancestral indigenous artists used ochre (clay + Fe oxides and hydroxides) for red and yellow pigments in cave art on every inhabited continent for at least 15 000 years, and much longer than that in some localities. Early historic cultures throughout the Middle East, Asia and the Mediterranean basin added other colourful minerals to their palette, including azurite and malachite for blue and green, calcite, gypsum, and diatomaceous earth for white, and charcoal for black. Some of these cultures created additional pigments by roasting or smelting minerals and altering them with vinegar or other organic acids. The use of mineral pigments and pigments of altered minerals using heat and acid continued throughout the Middle Ages and the Renaissance. Similar mineral pigments were used by native peoples in the New World for rock and cave art. Ancestral artists traditionally used water, saliva, oil and fats as binders for their pigments to create their paint.  相似文献   
247.
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in the baseflow fraction of streamflow, assessing whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate baseflow discharge and baseflow dissolved solids loads at stream gages (n = 69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow, indicating that subsurface transport processes play a dominant role in delivering dissolved solids to streams in the UCRB. A statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams (n = 27) from 1986 to 2011. Decreasing trends in baseflow dissolved solids loads were observed at 63% of streams. At the three most downstream sites, Green River at Green River, UT, Colorado River at Cisco, UT, and the San Juan River near Bluff, UT, baseflow dissolved solids loads decreased by a combined 823,000 metric tons (mT), which is approximately 69% of projected basin‐scale decreases in total dissolved solids loads as a result of salinity control efforts. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, landscape changes, and/or climate are reducing dissolved solids transported to streams through the subsurface. Notably, the pace and extent of decreases in baseflow dissolved solids loads declined during the most recent decade; average decreasing loads during the 2000s (28,200 mT) were only 54% of average decreasing loads in the 1990s (51,700 mT).  相似文献   
248.
Recent hydro‐climatological trends and variability characteristics were investigated for the Lake Naivasha basin with the aim of understanding the changes in water balance components and their evolution over the past 50 years. Using a Bayesian change point analysis and modified Mann–Kendall tests, time series of annual mean, maximum, minimum, and seasonal precipitation and flow, as well as annual mean lake volumes, were analysed for the period 1960–2010 to uncover possible abrupt shifts and gradual trends. Double cumulative curve analysis was used to investigate the changes in hydrological response attributable to either human influence or climatic variability. The results indicate a significant decline in lake volumes at a mean rate of 9.35 × 106 m3 year?1. Most of the river gauging stations showed no evidence of trends in the annual mean and maximum flows as well as seasonal flows. Annual minimum flows, however, showed abrupt shifts and significant (upward/downward) trends at the main outlet stations. Precipitation in the basin showed no evidence of abrupt shifts, but a few stations showed gradual decline. The observed changes in precipitation could not explain the decline in both minimum flows and lake volumes. The findings show no evidence of any impact of climate change for the Lake Naivasha basin over the past 50 years. This implies that other factors, such as changes in land cover and infrastructure development, have been responsible for the observed changes in streamflow and lake volumes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
249.
250.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号