IMP-6 spacecraft observations of low frequency radio emission, fast electrons, and solar wind plasma are used to examine the dynamics of the fast electron streams which generate solar type-III radio bursts. Of twenty solar electron events observed between April, 1971 and August, 1972, four were found to be amenable to detailed analysis. Observations of the direction of arrival of the radio emission at different frequencies were combined with the solar wind density and velocity measurements at 1 AU to define an Archimedean spiral trajectory for the radio burst exciter. The propagation characteristics of the exciter and of the fast electrons observed at 1 AU were then conpared. We find that: (1) the fast electrons excite the radio emission at the second harmonic; (2) the total distance travelled by the electrons was between 30 and 70% longer than the length of the smooth spiral defined by the radio observations; (3) this additional distance travelled is the result of scattering of the electrons in the interplanetary medium; (4) the observations are consistent with negligible true energy loss by the fast electrons. 相似文献
The sky brightness is a critical parameter for estimating the coronal observation conditions for a solar observatory. As part of a site-survey project in Western China, we measured the sky brightness continuously at the Lijiang Observatory in Yunnan province in 2011. A sky brightness monitor (SBM) was adopted to measure the sky brightness in a region extending from 4.5 to 7.0 apparent solar radii based on the experience of the Daniel K. Inouye Solar Telescope (DKIST) site survey. Every month, the data were collected manually for at least one week. We collected statistics of the sky brightness at four bandpasses located at 450, 530, 890, and 940 nm. The results indicate that aerosol scattering is of great importance for the diurnal variation of the sky brightness. For most of the year, the sky brightness remains under 20 millionths per airmass before local Noon. On average, the sky brightness is less than 20 millionths, which accounts for 40.41% of the total observing time on a clear day. The best observation time is from 9:00 to 13:00 (Beijing time). The Lijiang Observatory is therefore suitable for coronagraphs investigating the structures and dynamics of the corona. 相似文献
Oxygen and carbon isotope ratios in the martian CO2 are key values to study evolution of volatiles on Mars. The major problems in spectroscopic determinations of these ratios on Mars are uncertainties associated with: (1) equivalent widths of the observed absorption lines, (2) line strengths in spectroscopic databases, and (3) thermal structure of the martian atmosphere during the observation. We have made special efforts to reduce all these uncertainties. We observed Mars using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope. While the oxygen and carbon isotope ratios on Mars were byproducts in the previous observations, our observation was specifically aimed at these isotope ratios. We covered a range of 6022 to 6308 cm−1 with the highest resolving power of ν/δν=3.5×105 and a signal-to-noise ratio of 180 in the middle of the spectrum. The chosen spectral range involves 475 lines of the main isotope, 184 lines of 13CO2, 181 lines of CO18O, and 119 lines of CO17O. (Lines with strengths exceeding 10−27 cm at 218 K are considered here.) Due to the high spectral resolution, most of the lines are not blended. Uncertainties of retrieved isotope abundances are in inverse proportion to resolving power, signal-to-noise ratio, and square root of the number of lines. Laboratory studies of the CO2 isotope spectra in the range of our observation achieved an accuracy of 1% in the line strengths. Detailed observations of temperature profiles using MGS/TES and data on temperature variations with local time from two GCMs are used to simulate each absorption line at various heights in each part of the instrument field of view and then sum up the results. Thermal radiation of Mars' surface and atmosphere is negligible in the chosen spectral range, and this reduces errors associated with uncertainties in the thermal structure on Mars. Using a combination of all these factors, the highest accuracy has been achieved in measuring the CO2 isotope ratios: 13C/12C = 0.978 ± 0.020 and 18O/16O = 1.018 ± 0.018 times the terrestrial standards. Heavy isotopes in the atmosphere are enriched by nonthermal escape and sputtering, and depleted by fractionation with solid-phase reservoirs. The retrieved ratios show that isotope fractionation between CO2 and oxygen and carbon reservoirs in the solid phase is almost balanced by nonthermal escape and sputtering of O and C from Mars. 相似文献
We present absolute abundances and latitudinal variations of ozone and water in the atmosphere of Mars during its late northern spring (Ls=67.3°) shortly before aphelion. Long-slit maps of the a1Δg state of molecular oxygen (O2) and HDO, an isotopic form of water, were acquired on UT January 21.6 1997 using a high-resolution infrared spectrometer (CSHELL) at the NASA Infrared Telescope Facility. O2(a1Δg) is produced by ozone photolysis, and the ensuing dayglow emission at 1.27 μm is used as a tracer for ozone. Retrieved vertical column densities for ozone above ∼20 km ranged between 1.5 and 2.8 μm-atm at mid- to low latitudes (30°S-60°N) and decreased outside that region. A significant decrease in ozone density is seen near 30°N (close to the subsolar latitude of 23.5°N). The rotational temperatures retrieved from O2(a-X) emissions show a mean of 172±2.5 K, confirming that the sensed ozone lies in the middle atmosphere (∼24 km). The ν1 fundamental band of HDO near 3.67 μm was used as a proxy for H2O. The retrieved vertical column abundance of water varies from 3 precipitable microns (pr-μm) at ∼30°S to 24 pr-μm at ∼60°N. We compare these results with current photochemical models and with measurements obtained by other methods. 相似文献
New data on some platinum group metals in coal indicate that the concentration of Pt is generally less than about 5 ppb, that of Pd is generally less than 1 ppb, and that of Rh is generally less than 0.5 ppb. No conclusive evidence was obtained concerning the mode of occurrence of these elements in coal. 相似文献
This paper gives several new and strong arguments in favour of the possibility of fixation of anhydrous lithium in the interlayer space of trioctahedral potassium micas. From the chemical viewpoint Li+ can replace K+, but is located out of the alkaline cation site; it enters pseudo-octahedral cavities limited by the triangular bases of two aluminous tetrahedra of two consecutive sheets. The solubility limit of Li+ in the interlayer is a function of the AlIV content of the mica. It is given by the relation (Li/Li + K)max = 2[(Al/Si + Al)IV]2. In both micas investigated — phlogopite, KMg3(Si3Al)O10(OH)2, and eastonite, K(Mg2.5Al1.5)(Si2.5Al1.5)O10(OH)2 — there is a remarkable agreement between the calculated values of the solubility limits and those measured by exchange reactions with hydrothermal solutions, at 600°C, 2 kbar. In high-Al micas, the interlayer Li content can be very important, with about one-third of K+ replaced by Li+.
The fixation of Li+ according to this model provokes a strong flattening of the interlayer (strong decrease of the reticular distance d005) and a slight increase of the reticular distance d060. Infra-red (IR) absorption spectrometry shows that vacant K+ sites are created when Li+ enters the interlayer; one observes low-frequency OH stretching bands attributed to OH dipoles lying towards these empty sites. Fixation of Li+ does not provoke any modification of the IR spectra in the region 1200-300 cm−1, indicating that Li+ is really out of the sheet. For both cell dimensions and IR spectra, a comparison is made with “ordinary” lepidolites, having Li+ in the octahedral sheet; it provides a guide for the distinction between the two species of Li-bearing micas. 相似文献