首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5983篇
  免费   147篇
  国内免费   62篇
测绘学   123篇
大气科学   503篇
地球物理   1373篇
地质学   1985篇
海洋学   593篇
天文学   957篇
综合类   14篇
自然地理   644篇
  2021年   47篇
  2020年   65篇
  2019年   73篇
  2018年   111篇
  2017年   116篇
  2016年   132篇
  2015年   103篇
  2014年   129篇
  2013年   316篇
  2012年   177篇
  2011年   260篇
  2010年   238篇
  2009年   236篇
  2008年   241篇
  2007年   209篇
  2006年   228篇
  2005年   182篇
  2004年   184篇
  2003年   171篇
  2002年   165篇
  2001年   117篇
  2000年   108篇
  1999年   103篇
  1998年   95篇
  1997年   85篇
  1996年   88篇
  1995年   92篇
  1994年   86篇
  1993年   76篇
  1992年   86篇
  1991年   70篇
  1990年   98篇
  1989年   85篇
  1988年   75篇
  1987年   100篇
  1986年   75篇
  1985年   96篇
  1984年   131篇
  1983年   108篇
  1982年   97篇
  1981年   100篇
  1980年   88篇
  1979年   100篇
  1978年   71篇
  1977年   86篇
  1976年   71篇
  1975年   70篇
  1974年   55篇
  1973年   61篇
  1972年   35篇
排序方式: 共有6192条查询结果,搜索用时 15 毫秒
41.
42.
An approximate form of the Boltzmann equation has been used to obtain local ionization rates due to the absorption of galactic cosmic rays in the Jovian atmosphere. It is shown that the muon flux component of the cosmic ray-induced cascade may be especially importannt in ionizing the atmosphere at levels where the total number density exceeds 1019 cm?3 (well below the ionospheric layers produced by solar euv). A model containing both positive and negative ion reactions has been employed to compute equilibrium electron and ion number densities. Peak electron number densities on the order of 103 cm?3 may be expected even at relatively low magnetic latitudes. The dominant positive ions are NH4+ and CnHm+ cluster ions, with n ? 2; it is suggested that the absorption of galactic cosmic ray energy at such relatively high pressures in the Jovian atmosphere (M ? 1018to 1020cm?3) and the subsequent chemical reactions may be instrumental in the local formation of complex hydrocarbons.  相似文献   
43.
44.
In the tropical rain forests of the Congo during the dry season, from June to September 1987, carboxylic acid partial pressures (P gas) in the air above the canopy, at ground level, and at the boundary layer, were estimated from water samples such as fog and rainwater. The concentrations of these acids were also measured in the sap of tree leaves. Tree leaves act as a sink or as a source if the acid P gas is greater of lower than the acid concentrations in molecular form in sap. For each of these soluble gases, there is a value of P gas where the exchange is nul. This is called the compensation point. Values of the compensation point for some tree leaves were evaluated according to Henry's law. Henry's law coefficients at ppm levels were redetermined for formic (HCOOH), acetic (CH3COOH), propionic (CH3CH2COOH), and isobutyric (CH3CH(CH3)COOH) acids.By comparison of P gas and compensation points, it is concluded that the forest was a potential source for these acids. The soil-or the litter-acts as a significant source of a carboxylic acid of C3 or C4 atoms in the aliphatic chain. This carboxylic acid, not yet fully characterized, could play an important role in the rain acidity in forested zones of the equatorial areas.The direct emission of these carboxylic acids by vegetation was the main source in the boundary layer above the forest. The average emissions were 3.1×109, 7.8×109, and 8.4×109 molecules cm-2 s-1 for HCOOH, CH3COOH, and CH3CH2COOH, respectively. The savanna is an exogenous source of HCOOH and CH3CH2COOH during moderately rainy days for 30% of the time. The ozonolysis of isoprene seems to be a small source of HCOOH.  相似文献   
45.
The Chesapeake Bay is greatly impacted by numerous pollutants including heavy metals and understanding the controls on the distribution of heavy metals in the watershed is critical to mitigation and remediation efforts in controlling this type of pollution. Clasts from a stormwater catchment basin draining a subdivision near George Mason University, Fairfax VA (38°50.090°N 78°19.204°W) were investigated using X-ray diffraction (XRD), Scanning electron microcopy (SEM) and energy dispersive spectroscopy (EDS) to determine the nature of Mn-oxide coatings and relationship to bound heavy metals. Mn-oxides are poorly crystalline and occur as subhedral to anhedral platy particles and more rarely as euhedral plates. Micronodules are a commonly observed texture. Chemical compositions of coatings are variable with average major constituent concentrations being Mn (33.38 wt%), Fe (11.88 wt%), Si (7.33 wt%), Al (5.03 wt%), and Ba (0.90 wt%). Heavy metals are found in the coatings with Zn being most prevalent, occurring in approximately 58% of analyses with an average concentration of (0.66 wt%). Minor amounts of Co, Ni, Pb, and Cl are observed. Heavy metals and Cl are interpreted as being derived from road pollution. Mn-oxides can serve as a sequestration mechanism for pollution but may also release heavy metals. Field and laboratory observations indicate Mn-oxides occurring on the surface of the clasts can be mechanically mobilized. This is a mechanism for transporting heavy metals into the Chesapeake Bay watershed. Deicing agents may serve as a mechanism to release heavy metals through cation exchange and increased ionic strength. This is the first detailed mineralogical investigation of Mn-oxides and the roles they may play in pollution in the Chesapeake Bay.  相似文献   
46.
47.
We have developed cleaning methods for extracting diatomopal from bulk marine sediment samples, for measurement of both zinc (Zn) abundance and isotope composition. This cleaning technique was then applied to a set of Holocene core-top samples from the Southern Ocean. The measured δ66Zn (reported relative to the JMCLyon standard) and Zn/Si ratios from the Southern Ocean diatomopal samples range from 0.7 to 1.5‰, and from 14 to 0.9 μmol/mol, respectively. The Zn abundance and isotope composition data show a clear correlation with opal burial rates and other oceanographic parameters. In common with previous work, we interpret the systematic changes in the Zn/Si ratio to be linked to the variability in the concentrations of bioavailable Zn in the ambient surface seawater where the diatom opal is formed. This variability is likely to be primarily controlled by the degree to which Zn is taken up into phytoplankton biomass. The observed systematic pattern in the δ66Zn compositions of the diatomopal core-top samples is, similarly, likely to reflect changes in the δ66Zn composition of the ambient Zn in the surface waters above the core-top sites, which is progressively driven towards isotopically heavier values by preferential incorporation of the lighter isotopes into phytoplankton organic material. Thus, the systematic relationship between Zn isotopes and abundance observed in the core-top diatomopal samples suggests a potential tool for investigating the biogeochemical cycling of Zn in the past surface ocean for down-core diatomopal material. In this respect, it may be possible to test hypotheses that attribute variations in atmospheric CO2 on glacial–interglacial timescales to the degree to which trace metals limited primary productivity in HNLC zones.  相似文献   
48.
In order to fulfill the society demand for climate information at the spatial scale allowing impact studies, long-term high-resolution climate simulations are produced, over an area covering metropolitan France. One of the major goals of this article is to investigate whether such simulations appropriately simulate the spatial and temporal variability of the current climate, using two simulation chains. These start from the global IPSL-CM4 climate model, using two regional models (LMDz and MM5) at moderate resolution (15–20 km), followed with a statistical downscaling method in order to reach a target resolution of 8 km. The statistical downscaling technique includes a non-parametric method that corrects the distribution by using high-resolution analyses over France. First the uncorrected simulations are evaluated against a set of high-resolution analyses, with a focus on temperature and precipitation. Uncorrected downscaled temperatures suffer from a cold bias that is present in the global model as well. Precipitations biases have a season- and model-dependent behavior. Dynamical models overestimate rainfall but with different patterns and amplitude, but both have underestimations in the South-Eastern area (Cevennes mountains) in winter. A variance decomposition shows that uncorrected simulations fairly well capture observed variances from inter-annual to high-frequency intra-seasonal time scales. After correction, distributions match with analyses by construction, but it is shown that spatial coherence, persistence properties of warm, cold and dry episodes also match to a certain extent. Another aim of the article is to describe the changes for future climate obtained using these simulations under Scenario A1B. Results are presented on the changes between current and mid-term future (2021–2050) averages and variability over France. Interestingly, even though the same global climate model is used at the boundaries, regional climate change responses from the two models significantly differ.  相似文献   
49.
50.
Here we simulate dryland agriculture in the United States in order to assess potential future agricultural production under a set of general circulation model (GCM)-based climate change scenarios. The total national production of three major grain crops—corn, soybeans, and winter wheat—and two forage crops—alfalfa and clover hay—is calculated for the actual present day core production area (CPA) of each of these crops. In general, higher global mean temperature (GMT) reduces production and higher atmospheric carbon dioxide concentration ([CO2]) increases production. Depending on the climatic change scenarios employed overall national production of the crops studied changes by up to plus or minus 25% from present-day levels. Impacts are more significant regionally, with crop production varying by greater than ±50% from baseline levels. Analysis of currently possible production areas (CPPAs) for each crop indicates that the regions most likely to be affected by climate change are those on the margins of the areas in which they are currently grown. Crop yield variability was found to be primarily influenced by local weather and geographic features rather than by large-scale changes in climate patterns and atmospheric composition. Future US agronomic potential will be significantly affected by the changes in climate projected here. The nature of the crop response will depend primarily on to what extent precipitation patterns change and also on the degree of warming experienced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号