首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60889篇
  免费   1308篇
  国内免费   537篇
测绘学   1716篇
大气科学   4923篇
地球物理   12701篇
地质学   20482篇
海洋学   5074篇
天文学   13488篇
综合类   309篇
自然地理   4041篇
  2020年   399篇
  2019年   410篇
  2018年   1577篇
  2017年   1477篇
  2016年   1463篇
  2015年   959篇
  2014年   1402篇
  2013年   2850篇
  2012年   1907篇
  2011年   2188篇
  2010年   1760篇
  2009年   2272篇
  2008年   2110篇
  2007年   2076篇
  2006年   2003篇
  2005年   2639篇
  2004年   2786篇
  2003年   2335篇
  2002年   1684篇
  2001年   1405篇
  2000年   1290篇
  1999年   1224篇
  1998年   1147篇
  1997年   1156篇
  1996年   931篇
  1995年   921篇
  1994年   873篇
  1993年   809篇
  1992年   790篇
  1991年   752篇
  1990年   866篇
  1989年   758篇
  1988年   717篇
  1987年   842篇
  1986年   686篇
  1985年   910篇
  1984年   1063篇
  1983年   1011篇
  1982年   948篇
  1981年   912篇
  1980年   803篇
  1979年   782篇
  1978年   755篇
  1977年   710篇
  1976年   662篇
  1975年   587篇
  1974年   644篇
  1973年   639篇
  1972年   395篇
  1971年   359篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Europa is bombarded by intense radiation that erodes the surface, launching molecules into a thin “atmosphere” representative of surface composition. In addition to atoms and molecules created in the mostly water ice surface such as H2O, O2, H2, the atmosphere is known to have species representative of trace surface materials. These trace species are carried off with the 10-104 H2O molecules ejected by each energetic heavy ion, a process we have simulated using molecular dynamics. Using the results of those simulations, we found that a neutral mass spectrometer orbiting ∼100 km above the surface could detect species with surface concentrations above ∼0.03%. We have also modeled the atmospheric spatial structure of the volatile species CO2 and SO2 under a variety of assumptions. Detections of these species with moderate time and space resolution would allow us to constrain surface composition, chemistry and to study space weathering processes.  相似文献   
992.
We report the first definitive detection of a discrete dark atmospheric feature on Uranus in 2006 using visible and near-infrared images from the Hubble Space Telescope and the Keck II 10-m telescope. Like Neptune's Great Dark Spots, this Uranus Dark Spot had bright companion features that exhibited considerable variability in brightness and location relative to the Dark Spot. We detected the feature or its bright companions on 16 June (Hubble), 30 July and 1 August (Keck), 23-24 August (Hubble), and 15 October (Keck). The dark feature—detected at latitude ∼28±1° N with an average physical extent of roughly 2° (1300 km) in latitude and 5° (2700 km) in longitude—moved with a nearly constant zonal velocity of , which is roughly 20 m s−1 greater than the average observed speed of bright features at this latitude. The dark feature's contrast and extent varied as a function of wavelength, with largest negative contrast occurring at a surprisingly long wavelength when compared with Neptune's dark features: the Uranus feature was detected out to 1.6 μm with a contrast of −0.07, but it was undetectable at 0.467 μm; the Neptune GDS seen by Voyager exhibited its most prominent contrast of −0.12 at 0.48 μm, and was undetectable longward of 0.7 μm. Computational fluid dynamic simulations of the dark feature on Uranus suggest that structure in the zonal wind profile may be a critical factor in the emergence of large sustained vortices.  相似文献   
993.
We consider the scenario in which the presence of ammonia in the bulk composition of Enceladus plays a pivotal role in its thermochemical evolution. Because ammonia reduces the melting temperature of the ice shell by 100 K below that of pure water ice, small amounts of tidal dissipation can power an “ammonia feedback” mechanism that leads to secondary differentiation of Enceladus within the ice shell. This leads to compositionally distinct zones at the base of the ice shell arranged such that a layer of lower density (and compositionally buoyant) pure water ice underlies the undifferentiated ammonia-dihydrate ice layer above. We then consider a large scale instability arising from the pure water ice layer, and use a numerical model to explore the dynamics of compositional convection within the ice shell of Enceladus. The instability of the layer can easily account for a diapir that is hemispherical in scale. As it rises to the surface, it co-advects the warm internal temperatures towards the outer layers of the satellite. This advected heat facilitates the generation of a subsurface ocean within the ice shell of Enceladus. This scenario can simultaneously account for the origin of asymmetry in surface deformation observed on Enceladus as well as two global features inferred to exist: a large density anomaly within the interior and a subsurface ocean underneath the south polar region.  相似文献   
994.
Sang J. Kim  T.R. Geballe  J.H. Kim 《Icarus》2009,202(1):354-357
Jupiter exhibits bright H+3 auroral arcs at 3-4 microns that cool the hot (>1000 K) ionosphere above the ∼10−7 bar level through the infrared bands of this trace constituent. Below the 10−7 bar level significant cooling proceeds through infrared active bands of CH4, C2H2, and C2H6. We report the discovery of 3-micron line emission from these hydrocarbon species in spectra of the jovian south polar region obtained on April 18 and 20, 2006 (UT) with CGS4 on the United Kingdom Infrared Telescope. Estimated cooling rates through these molecules are 7.5×10−3, 1.4×10−3, and , respectively, for a total nearly half that of H+3. We derive a temperature of 450 ± 50 K in the 10−7-10−5 bar region from the C2H2 lines.  相似文献   
995.
We have investigated the role of group velocity in the calculation of pitch-angle diffusion coefficients by electron cyclotron harmonic (ECH) waves in planetary magnetospheres. The assumption which is generally made that the parallel group velocity can be neglected in comparison with particle parallel velocity is examined in detail. It is found that for lowest harmonic band this assumption is quite good. It is found that in general it is not possible to ignore the parallel group velocity. However, for lowest harmonic band this assumption is quite good at low electron temperatures.  相似文献   
996.
The dynamical mass of a star cluster can be derived from the virial theorem, using the measured half-mass radius and line-of-sight velocity dispersion of the cluster. However, this dynamical mass may be a significant overestimation of the cluster mass if the contribution of the binary orbital motion is not taken into account. Here, we describe the mass overestimation as a function of cluster properties and binary population properties, and briefly touch on the issue of selection effects. We find that for clusters with a measured velocity dispersion of σ los?10 km?s?1 the presence of binaries does not affect the dynamical mass significantly. For clusters with σ los?1 km?s?1 (i.e., low-density clusters), the contribution of binaries to σ los is significant, and may result in a major dynamical mass overestimation. The presence of binaries may introduce a downward shift of Δlog?(L V /M dyn)=0.05–0.4 (in solar units) in the log?(L V /M dyn) versus age diagram.  相似文献   
997.
We present a catalogue with coordinates and photometric data of 2446 Be star candidates in the Large Magellanic Cloud (LMC), based on a search of the OGLE II data base. The I -band light curves of these stars show outbursts in 24 per cent of the sample (Type-1 stars), high and low states in 10 per cent, periodic variations in 6 per cent (Type-3 stars), and stochastic variations in 60 per cent of the cases. We report on the result of the statistical study of light curves of Type-1 and Type-3 stars in the LMC, and the comparison with the previously reported results of the Small Magellanic Cloud (SMC) sample. We find a statistically significant difference between amplitude, duration and asymmetry distributions of outbursts in both galaxies. Outbursts of SMC Type-1 stars are usually brighter, longer and with a slower decline. We find a bimodal distribution of periods of Type-3 stars in both galaxies, probably related to the recently discovered double periodic blue variables. We find also period and amplitude distributions of Type-3 LMC stars statistically different from those of the SMC stars. Our findings above suggest that the mechanisms causing the observed photometric variability of Type-1 and Type-3 stars could depend on metallicity. Moreover, they suggest that the outbursts are not primarily caused by stellar winds.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号