首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   14篇
  国内免费   6篇
测绘学   9篇
大气科学   47篇
地球物理   83篇
地质学   134篇
海洋学   32篇
天文学   51篇
自然地理   75篇
  2024年   2篇
  2022年   1篇
  2021年   9篇
  2020年   9篇
  2019年   3篇
  2018年   10篇
  2017年   13篇
  2016年   10篇
  2015年   10篇
  2014年   11篇
  2013年   20篇
  2012年   15篇
  2011年   20篇
  2010年   26篇
  2009年   32篇
  2008年   23篇
  2007年   21篇
  2006年   22篇
  2005年   17篇
  2004年   18篇
  2003年   19篇
  2002年   14篇
  2001年   11篇
  2000年   10篇
  1999年   9篇
  1998年   13篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有431条查询结果,搜索用时 15 毫秒
201.
Deep-sea benthic communities primarily rely on an allochthonous food source. This may be in the form of phytodetritus or as food falls e.g. sinking carcasses of nekton or debris of marine macrophyte algae. Deep-sea macrourids are the most abundant demersal fish in the deep ocean. Macrourids are generally considered to be the apex predators/scavengers in deep-sea communities. Baited camera experiments and stable isotope analyses have demonstrated that animal carrion derived from the surface waters is an important component in the diets of macrourids; some macrourid stomachs also contained vegetable/plant material e.g. onion peels, oranges, algae. The latter observations led us to the question: is plant material an attractive food source for deep-sea scavenging fish? We simulated a plant food fall using in situ benthic lander systems equipped with a baited time-lapse camera. Abyssal macrourids and cusk-eels were attracted to the bait, both feeding vigorously on the bait, and the majority of the bait was consumed in <30 h. These observations indicate (1) plant material can produce an odour plume similar to that of animal carrion and attracts deep-sea fish, and (2) deep-sea fish readily eat plant material. This represents to our knowledge the first in situ documentation of deep-sea fish ingesting plant material and highlights the variability in the scavenging nature of deep-sea fishes. This may have implications for food webs in areas where macrophyte/seagrass detritus is abundant at the seafloor e.g. canyon systems and continental shelves close to seagrass meadows (Bahamas and Mediterranean).  相似文献   
202.
The pedogenic histories of four adjacent profiles of a polygenetic palaeosol developed on a Middle Pleistocene terrace of the proto-Thames from Wivenhoe in southeast England are reconstructed on the basis of superposition of key micromorphological features. Despite a considerable variation in macromorphology, partly resulting from large-scale periglacial features, three of the profiles have similar micromorphological records in that they retain evidence for two phases of clay illuviation separated by a period of periglacial disruption. This reconstruction, however, seems to be incomplete because the fourth profile contains micromorphological evidence for a further illuviation–disruption cycle. The extent of this variation suggests that soil micromorphology should be used only with care to reconstruct pedogenic or pedosedimentary histories of complex polygenetic palaeosols, or to compare such palaeosols on different surfaces of chronosequences spanning periods of major climatic change. The variable and possibly limited resolution of micromorphology, together with the current uncertainty over the exact environmental signifiance of illuvial clay features, means that inferred pedogenic phases should be correlated with specific climatic stages only with considerable caution. © 1998 John Wiley & Sons, Ltd.  相似文献   
203.
Productivity in the Southern Oceans is iron-limited, and the supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine reservoir. Glacial sediment sources of iron have rarely been considered, as the iron has been assumed to be inert and non-bioavailable. This study demonstrates the presence of potentially bioavailable Fe as ferrihydrite and goethite in nanoparticulate clusters, in sediments collected from icebergs in the Southern Ocean and glaciers on the Antarctic landmass. Nanoparticles in ice can be transported by icebergs away from coastal regions in the Southern Ocean, enabling melting to release bioavailable Fe to the open ocean. The abundance of nanoparticulate iron has been measured by an ascorbate extraction. This data indicates that the fluxes of bioavailable iron supplied to the Southern Ocean from aeolian dust (0.01–0.13 Tg yr-1) and icebergs (0.06–0.12 Tg yr-1) are comparable. Increases in iceberg production thus have the capacity to increase productivity and this newly identified negative feedback may help to mitigate fossil fuel emissions.  相似文献   
204.
We employed a discrete‐element technique to investigate the effects of cover strength and fault dip on the style of fault‐propagation folding above a blind normal fault. Deformation in the cover is initially characterised by an upward‐widening monocline that is often replaced, with continued slip on the basement fault, by a single, through‐going fault. Localisation on a single fault produces hangingwall synclines and footwall anticlines as a result of breaching of the earlier monocline and which do not represent ‘drag’ against the fault. As basement fault dip decreases the width of the monocline at the surface increases. Experiments varying the strength of the overburden material illustrate the control that cover strength has on both fault propagation and folding in the cover. Reduction of the strength of the cover results in: (1) the width of the monocline above the fault tip increasing, and (2) more marked footwall thinning and hangingwall thickening of beds. In contrast, an increase in cover strength results in a narrower monocline and rapid propagation of the basement fault into the cover. In multi‐layer (variable strength) experiments simultaneous faulting of competent layers and flow of weaker layers produces complex structural relationships. Faults in the cover die out up and down section and do not link to the basement fault at depth. Similarly, complex macroscopically ductile characteristics such as footwall thinning and hangingwall thickening can be juxtaposed against simple brittle fault cut‐offs. These relationships must be borne in mind when interpreting the field and seismic expression of such structures. We discuss the modelling results in terms of their implications for structural interpretation and the surficial expression of fault‐related folding in extensional settings.  相似文献   
205.
The Rheic Ocean formed at ca. 500 Ma, when several peri-Gondwanan terranes (e.g. Avalonia and Carolinia) drifted from the northern margin of Gondwana, and were consumed during the Late Carboniferous collision between Laurussia and Gondwana, a key event in the formation of Pangea. Several mafic complexes ranging in age from ca. 400–330 Ma preserve many of the lithotectonic and/or chemical characteristics of ophiolites. They are characterized by anomalously high εNd values that are typically either between or above the widely accepted model depleted mantle curves. These data indicate derivation from a highly depleted (HD) mantle and imply that (i) the mantle source of these complexes displays time-integrated depletion in Nd relative to Sm, and (ii) depletion is the result of an earlier melting event in the mantle from which basalt was extracted. The extent of mantle depletion indicates that this melting event occurred in the Neoproterozoic, possibly up to 500 million years before the Rheic Ocean formed. If so, the mantle lithosphere that gave rise to the Rheic Ocean mafic complexes must have been captured from an adjacent, older oceanic tract. The transfer of this captured lithosphere to the upper plate enabled it to become preferentially preserved. Possible Mesozoic–Cenozoic analogues include the capture of the Caribbean plate or the Scotia plate from the Pacific to the Atlantic oceanic realm. Our model implies that virtually all of the oceanic lithosphere generated during the opening phase of the Rheic Ocean was consumed by subduction during Laurentia–Gondwana convergence.  相似文献   
206.
A follow-up survey using the Submillimetre High-Angular Resolution Camera (SHARC-II) at 350 μm has been carried out to map the regions around several 850-μm-selected sources from the Submillimetre HAlf Degree Extragalactic Survey (SHADES). These observations probe the infrared (IR) luminosities and hence star formation rates in the largest existing, most robust sample of submillimetre galaxies (SMGs). We measure 350-μm flux densities for 24 850-μm sources, seven of which are detected at ≥2.5σ within a 10 arcsec search radius of the 850-μm positions. When results from the literature are included the total number of 350-μm flux density constraints of SHADES SMGs is 31, with 15 detections. We fit a modified blackbody to the far-IR (FIR) photometry of each SMG, and confirm that typical SMGs are dust-rich  ( M dust≃ 9 × 108 M)  , luminous  ( L FIR≃ 2 × 1012 L)  star-forming galaxies with intrinsic dust temperatures of ≃35 K and star formation rates of  ≃400 M yr−1  . We have measured the temperature distribution of SMGs and find that the underlying distribution is slightly broader than implied by the error bars, and that most SMGs are at 28 K with a few hotter. We also place new constraints on the 350-μm source counts, N 350(>25 mJy) ∼ 200–500 deg−2.  相似文献   
207.
Calcite in schists of the metamorphic complex at Naxos is depleted both in 13C and in 18O with respect to massive marbles. This effect is attributed to isotope exchange with circulating CO2-rich fluids, which had an >0.5 according to fluid inclusions. The carbon isotopic composition of the calcites is close to equilibrium with fluid inclusion CO2 at metamorphic temperatures. Mass balance calculations assuming initial 13C values of 0 for calcite and –5 for the fluid, give integrated fluid/rock volume ratios between 0.1 and 2.0. Such high fluid/rock ratios are supported by observations on the distribution of CO2/H2O ratios of fluid inclusions, carbon isotopic compositions of fluid inclusion CO2 and oxygen isotope systematics of silicates.  相似文献   
208.
The Korosten complex is a Paleoproterozoic gabbro–anorthosite–rapakivi granite intrusion which was emplaced over a protracted time interval — 1800–1737 Ma. The complex occupies an area of about 12 000 km2 in the north-western region of the Ukrainian shield. About 18% of this area is occupied by various mafic rocks (gabbro, leucogabbro, anorthosite) that comprise five rock suites: early anorthositic A1 (1800–1780 Ma), main anorthositic A2 (1760 Ma), early gabbroic G3 (between 1760 and 1758 Ma), late gabbroic G4 (1758 Ma), and a suite of dykes D5 (before 1737 Ma). In order to examine the relationships between the various intrusions and to assess possible magmatic sources, Nd and Sr isotopic composition in mafic whole-rock samples were measured. New Sr and Nd isotope measurements combined with literature data for the mafic rocks of the Korosten complex are consistent and enable construction of Rb–Sr and Sm–Nd isochronous regressions that yield the following ages: 1870 ± 310 Ma (Rb–Sr) and 1721 ± 90 Ma (Sm–Nd). These ages are in agreement with those obtained by the U–Pb method on zircons and indicate that both Rb–Sr and Sm–Nd systems have remained closed since the time of crystallisation. In detail, however, measurable differences in isotopic composition of the Korosten mafic rock depending on their suite affiliation were revealed. The oldest, A1 rocks have lower Sr (87Sr/86Sr(1760) = 0.70233–0.70288) and higher Nd (εNd(1760) = 1.6–0.9) isotopic composition. The most widespread A2 anorthosite and leucogabbro display higher Sr and lower Nd isotopic composition: 87Sr/86Sr(1760) = 0.70362, εNd(1760) varies from 0.2 to − 0.7. The G3 gabbro–norite has slightly lower εNd(1760) varying from − 0.7 to − 0.9. Finally, G4 gabbroic rocks show relatively high initial 87Sr/86Sr (0.70334–0.70336) and the lowest Nd isotopic composition (εNd(1760) varies from − 0.8 to − 1.4) of any of the mafic rocks of the Korosten complex studied to date. On the basis of Sr and Nd isotopic composition we conclude that Korosten initial melts may have inherited their Nd and Sr isotopic characteristics from the lower crust created during the 2.05–1.95 Ga Osnitsk orogeny and 2.0 Ga continental flood basalt event. Indeed, εNd(1760) values in Osnitsk rocks vary from 0.0 to − 1.9 and from 0.2 to 3.4 in flood basalts. We suggest that these rocks being drawn into the upper mantle might melt and give rise to the Korosten initial melts. 87Sr/86Sr(1760) values also support this interpretation. We suggest that the Sr and Nd isotopic data currently available on mafic rocks of the Korosten complex are consistent with an origin of its primary melts by partial melting of lower crustal material due to downthrusting of the lower crust into upper mantle forced by Paleoproterozoic amalgamation of Sarmatia and Fennoscandia.  相似文献   
209.
Climate change may cause most harm to countries that have historically contributed the least to greenhouse gas emissions and land-use change. This paper identifies consequentialist and non-consequentialist ethical principles to guide a fair international burden-sharing scheme of climate change adaptation costs. We use these ethical principles to derive political principles – historical responsibility and capacity to pay – that can be applied in assigning a share of the financial burden to individual countries. We then propose a hybrid ‘common but differentiated responsibilities and respective capabilities’ approach as a promising starting point for international negotiations on the design of burden-sharing schemes. A numerical assessment of seven scenarios shows that the countries of Annex I of the United Nations Framework Convention on Climate Change would bear the bulk of the costs of adaptation, but contributions differ substantially subject to the choice of a capacity to pay indicator. The contributions are less sensitive to choices related to responsibility calculations, apart from those associated with land-use-related emissions. Assuming costs of climate adaptation of USD 100 billion per year, the total financial contribution by the Annex I countries would be in the range of USD 65–70 billion per year. Expressed as a per capita basis, this gives a range of USD 43–82 per capita per year.  相似文献   
210.
The Africa–Arabia plate boundary comprises the Red Sea oceanic spreading centre and the left‐lateral Dead Sea Fault Zone (DSFZ); however, previous work has indicated kinematic inconsistency between its continental and oceanic parts. The Palmyra Fold Belt (PFB) splays ENE from the DSFZ in SW Syria and persists for ~400 km to the River Euphrates, but its significance within the regional pattern of active crustal deformation has hitherto been unclear. We report deformation of Euphrates terraces consistent with Quaternary right‐lateral transpression within the PFB, indicating anticlockwise rotation (estimated as 0.3° Ma?1 about 36.0°N 39.8°E) of the block between the PFB and the northern DSFZ relative to the Arabian Plate interior. The northern DSFZ is shown to be kinematically consistent with the combination of Euler vectors for the PFB and the Red Sea spreading, resolving the inconsistency previously evident. The SW PFB causes a significant earthquake hazard, previously unrecognized, to the city of Damascus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号