首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   13篇
  国内免费   6篇
测绘学   9篇
大气科学   46篇
地球物理   79篇
地质学   137篇
海洋学   32篇
天文学   51篇
自然地理   74篇
  2024年   2篇
  2022年   1篇
  2021年   9篇
  2020年   9篇
  2019年   3篇
  2018年   10篇
  2017年   12篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   19篇
  2012年   15篇
  2011年   20篇
  2010年   24篇
  2009年   30篇
  2008年   23篇
  2007年   20篇
  2006年   22篇
  2005年   17篇
  2004年   18篇
  2003年   19篇
  2002年   14篇
  2001年   11篇
  2000年   9篇
  1999年   10篇
  1998年   12篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   8篇
  1990年   1篇
  1989年   6篇
  1988年   2篇
  1987年   7篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1971年   1篇
排序方式: 共有428条查询结果,搜索用时 15 毫秒
61.
Variations in the speciation of iron in the northern North Sea were investigated in an area covering at least two different water masses and an algal bloom, using a combination of techniques. Catalytic cathodic stripping voltammetry was used to measure the concentrations of reactive iron (FeR) and total iron (FeT) in unfiltered samples, while dissolved iron (FeD) was measured by GFAAS after extraction of filtered sea water. FeR was defined by the amount of iron that complexed with 20 μM 1-nitroso-2-napthol (NN) at pH 6.9. FeT was determined after UV-digestion at pH 2.4. Concentrations of natural organic iron complexing ligands and values for conditional stability constants, were determined in unfiltered samples by titration. Mean concentrations of 1.3 nM for FeR, 10.0 nM for FeT and 1.7 nM for FeD were obtained for the area sampled. FeR concentrations increased towards the south of the area investigated, as a result of the increased influence of continental run off. FeR concentrations were found to be enhanced below the nutricline (below 40 m) as a result of the remineralisation of organic material. Enhanced levels of FeT were observed in some surface samples and in samples collected below 30 m at stations in the south of the area studied, thought to be a result of high concentrations of biogenic particulate material and the resuspended sediments respectively. FeD concentrations varied between values similar to those of FeT in samples from the north of the area to values similar to those of FeR in the south. The bloom was thought to have influenced the distribution of both FeR and FeT, but less evidence was observed for any influence on FeR and FeD. The concentration of organic complexing ligands, which could possibly include a contribution from adsorption sites on particulate material, increased slightly in the bloom area and in North Sea waters. Iron was found to be fully (99.9%) complexed by the organic complexing ligands at a pH of 6.9 and largely complexed (82–96%) at pH 8. The ligands were almost saturated with iron suggesting that the ligand concentration could limit the concentration of iron occurring as dissolved species.  相似文献   
62.
An integrated explanation is proposed for the Late Cenozoic crustal deformation in Yunnan, SW China, using sedimentary and geomorphological evidence from the Yangtze and Red River systems. The observed fluvial incision indicates up to ~ 15 km of crustal thickening, associated with ~ 3 km of uplift, apparently triggered at ~ 8 Ma by monsoon-induced erosion drawing mobile lower crust from beneath Tibet to the northwest. The mobile lower-crustal layer beneath Yunnan was initially very thin, but a positive feedback loop developed, whereby each incremental influx of lower-crust widened and heated this layer, facilitating the next increment. At ~ 5 Ma, the shear tractions exerted on the brittle upper-crust by this flowing lower crust became sufficient to reactivate pre-existing lines of weakness, dragging blocks of the brittle layer southward and creating the region′s modern active fault systems. This region thus provides a dramatic example of crustal deformation induced by Late Cenozoic climate change, notwithstanding its location adjoining the India–Eurasia plate boundary.  相似文献   
63.
The Cenozoic landscape development of Britain remains relatively poorly understood. On the one hand, ‘plumists’ have tried to explain the present-day topography as a consequence of effects of the Iceland mantle plume during the Palaeocene-Eocene British Tertiary Igneous Province (BTIP) magmatism, with little or no subsequent modification. On the other hand, abundant evidence exists from fluvial and marine terraces and superimposed karstic levels for significant vertical crustal motions during the Quaternary, which clearly has nothing to do with any mantle plume. To shed light on this issue, we present the first publication of data that constrain the Cenozoic thermal history of the North Pennine uplands of northern England, from apatite fission-track analysis of drill cuttings from the Eastgate Borehole in Weardale, in the western part of County Durham. Our results indicate ~650 m of regional denudation since the latest Oligocene/Early Miocene, plus the ~400 m of localized entrenchment that has created the modern Weardale valley. Before the latest Oligocene/Early Miocene, but following the BTIP magmatism, the crust in this region experienced significant cooling, mainly due to a decrease in the geothermal gradient from ~55 to 61 °C km?1 to the present 38 °C km?1, along with ~300 ± 200 m of denudation. Although significant BTIP magmatism occurred in northern England, it thus had only a limited net effect; the crust experienced dramatic heating, but cooled back to its original thermal state within, at most, a few tens of millions of years. We suggest that this rapid cooling effect resulted from westward flow of relatively cold material within the mobile lower-crustal layer, driven by the lateral pressure gradient induced by earlier heating effects and effects of surface processes. Whatever topography developed during the Palaeogene, as a direct result of these heating effects, underplating at the base of the crust, and the associated modest denudation, was presumably also short-lived; significant changes to the crustal thickness, and thus to the topography, can be envisaged as a consequence of subsequent lower-crustal flow.  相似文献   
64.
We compute the specific angular momentum distributions for a sample of low-mass disc galaxies observed by Swaters. We compare these distributions to those of dark matter haloes obtained by Bullock et al. from high-resolution N -body simulations of structure formation in a ΛCDM universe. We find that although the disc mass fractions are significantly smaller than the universal baryon fraction, the total specific angular momenta of the discs are in good agreement with those of dark matter haloes. This suggests that discs form out of only a small fraction of the available baryons, but yet manage to draw most of the available angular momentum. In addition we find that the angular momentum distributions of discs are clearly distinct from those of the dark matter; discs lack predominantly both low and high specific angular momenta. Understanding these findings in terms of a coherent picture for disc formation is challenging. Cooling, feedback and stripping, which are the main mechanisms to explain the small disc mass fractions found, seem unable to simultaneously explain the angular momentum distributions of the discs. In fact, it seems that the baryons that make up the discs must have been born out of angular momentum distributions that are clearly distinct from those of ΛCDM haloes. However, the dark and baryonic mass components experience the same tidal forces, and it is therefore expected that they should have similar angular momentum distributions. Therefore, understanding the angular momentum content of disc galaxies remains an important challenge for our picture of galaxy formation.  相似文献   
65.
66.
67.
Upland flats, attributable to erosion, have long been recognised in the landscape of the Lake District region of NW England, at altitudes of up to ~ 800 m O.D. Extrapolation using uplift rates derived from dated Pleistocene sites (karstic caves and other features) in the adjacent Pennine uplands suggests that if this succession of flats formed close to sea-level they date from the Middle Pliocene onwards, indicating a subsequent time-averaged uplift rate of almost 0.3 mm a 1. Numerical modelling indicates that erosion of surrounding areas at a typical rate of 0.2 mm a 1 since 3.1 Ma could have caused this uplift, as well as constraining the local effective viscosity of the lower crust as ~ 4 × 1018 Pa s and the typical local Moho temperature as ~ 650 °C. It is thus feasible that most of the topography of northern England has developed since the Middle Pliocene, as a consequence of coupling between erosion and the resulting induced flow in the lower continental crust. The much faster vertical crustal motions indicated in this part of northern England, compared with SE England, are thus mainly a consequence of much greater mobility of the lower crust in the north, due to its younger thermal age and the heating effect of radioactive Palaeozoic granites. Uplift of this magnitude, which has previously gone unrecognised, may have affected post-Pliocene global climate.  相似文献   
68.
This study provides a detailed magnetostratigraphic record of subsidence in the Linxia Basin, documenting a 27 Myr long sedimentary record from the northeastern edge of the Tibetan Plateau. Deposition in the Linxia Basin began at 29 Ma and continued nearly uninterruptedly until 1.7 Ma. Increasing rates of subsidence between 29 and 6 Ma in the Linxia Basin suggest deposition in the foredeep portion of a flexural basin and constrain the timing of shortening in the northeastern margin of the plateau to Late Oligocene–Late Miocene time. By Late Miocene–Early Pliocene time, a decrease in subsidence rates in the Linxia Basin associated with thrust faulting and a 10° clockwise rotation in the basin indicates that the deformation front of the Tibetan plateau had propagated into the currently deforming region northeast of the plateau.  相似文献   
69.
Gas‐Oil Gravity Drainage is to be enhanced by steam injection in a highly fractured, low permeability carbonate field in Oman. Following a successful pilot, field‐wide steam injection is being implemented, first of this type in the world. A dedicated monitoring program has been designed to track changes in the reservoir. Various observations are to be acquired, including, surface deformation, temperature measurements, microseismic, well logs, pressure and saturation measurements to monitor the reservoir. Because significant changes in the reservoir density are expected, time‐lapse gravimetry is also being considered. In this paper we investigate the feasibility of gravimetric monitoring of the thermally enhanced gravity drainage process at the carbonate field in Oman. For this purpose, forward gravity modelling is performed. Based on field groundwater measurements, the estimates of the hydrological signal are considered and it is investigated under what conditions the groundwater influences can be minimized. Using regularized inversion of synthetic gravity data, we analyse the achievable accuracy of heat‐front position estimates. In case of large groundwater variations at the field, the gravity observations can be significantly affected and, consequently, the accuracy of heat‐front monitoring can be deteriorated. We show that, by applying gravity corrections based on local observations of groundwater, the hydrological influences can to a large extent be reduced and the accuracy of estimates can be improved. We conclude that gravimetric monitoring of the heat‐front evolution has a great potential.  相似文献   
70.
Assumptions about fluvial processes and process–form relations are made in general models and in many site-specific applications. Many standard assumptions about reach-scale flow resistance, bed-material entrainment thresholds and transport rates, and downstream hydraulic geometry involve one or other of two types of scale invariance: a parameter (e.g. critical Shields number) has the same value in all rivers, or doubling one variable causes a fixed proportional change in another variable in all circumstances (e.g. power-law hydraulic geometry). However, rivers vary greatly in size, gradient, and bed material, and many geomorphologists regard particular types of river as distinctive. This review examines the tension between universal scaling assumptions and perceived distinctions between different types of river. It identifies limits to scale invariance and departures from simple scaling, and illustrates them using large data sets spanning a wide range of conditions. Scaling considerations and data analysis support the commonly made distinction between coarse-bed and fine-bed reaches, whose different transport regimes can be traced to the different settling-velocity scalings for coarse and fine grains. They also help identify two end-member sub-types: steep shallow coarse-bed ‘torrents’ with distinctive flow-resistance scaling and increased entrainment threshold, and very large, low-gradient ‘mega rivers’ with predominantly suspended load, subdued secondary circulation, and extensive backwater conditions. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号