首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   19篇
  国内免费   6篇
测绘学   9篇
大气科学   46篇
地球物理   79篇
地质学   129篇
海洋学   35篇
天文学   52篇
自然地理   74篇
  2024年   1篇
  2022年   1篇
  2021年   9篇
  2020年   9篇
  2019年   3篇
  2018年   11篇
  2017年   13篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   20篇
  2012年   15篇
  2011年   21篇
  2010年   25篇
  2009年   30篇
  2008年   23篇
  2007年   21篇
  2006年   22篇
  2005年   17篇
  2004年   18篇
  2003年   19篇
  2002年   13篇
  2001年   11篇
  2000年   9篇
  1999年   9篇
  1998年   13篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有424条查询结果,搜索用时 484 毫秒
381.
382.
The low- coronal loop model of Sillen and Kattenberg (1980) is extended to include a surrounding current-free plasma. We calculated the dispersion curves of kink modes by solving the linearized MHD-equations of motion.We found a strong stabilizing influence on the growth rates of kink instabilities due to the surrounding plasma.In loops that are thick, have small current densities and that have a high density and a low magnetic field strength the growth times for kinks become of the order of days.Presently at Caltech, Pasadena, U.S.A.Presently at the FOM-Institute for Plasma Physics, Rijnhuizen, Nieuwegein, The Netherlands.  相似文献   
383.
384.
385.
The Nebo–Babel Ni–Cu–platinum-group element (PGE) sulphide deposit in the West Musgrave Block, Western Australia, is the largest nickel sulphide discovery in the last 10 years. The deposit is hosted within a concentrically zoned, olivine-free, tube-like (chonolithic), gabbronorite intrusion associated with the, approximately, 1,078-Ma Giles Complex-layered intrusions in the Warakurna large igneous province. Emplaced into sulphide-free amphibolite facies orthogneiss, the fault-offset Nebo–Babel chonolith extends for 5 km and has a cross-section of 1 × 0.5 km. Igneous mineralogy, fabrics, and textures are well preserved. The lithostratigraphy includes variably textured leucogabbronorites (VLGN) that form an outer shell around mineralised gabbronorite (MGN), with barren gabbronorite (BGN) and oxide–apatite gabbronorite (OAGN) in the middle and lower parts of the chonolith. Mineral and whole-rock geochemistry indicate that the units become progressively evolved in the order: VLGN, MGN, BGN, and OAGN, and that incompatible trace-element concentrations increase downwards within the MGN and BGN. The mineralisation, which is confined to the early, more primitive units (VLGN and MGN), occurs as massive sulphide breccias and stringers and as disseminated gabbronorite-hosted sulphides. The massive sulphides were emplaced late in the intrusive sequence, have different PGE chemistry and Cu tenor to the disseminated sulphides, and have undergone sulphide fractionation. The distribution of disseminated sulphides, which are primary magmatic in origin, is related to chonolith geometry and magma flow regimes, rather than to gravitational settling. Sulfur-bearing country rocks are absent in the Nebo–Babel deposit area, and thus, local crustal S addition was unlikely to have been the major mechanism in achieving sulphide immiscibility. The Nebo–Babel intrusion is part of an originally continuous magma chonolith with multiple and related magma pulses. The parental magma was medium- to low-K tholeiite with 8–9 wt% MgO. The initial magma pulse (VLGN), the most primitive and sulphide saturated, was probably emplaced along a linear weakness in the country rock. After crystallisation of VLGN, marginally more fractionated, sulphide-saturated magma was injected through the thermally insulated core of the conduit, forming the MGN. Successive pulse(s) of more fractionated magma (BGN) were emplaced in the core of the intrusion. After magma flow ceased, closed system crystal fractionation produced consistent mineral and chemical fractionation trends within BGN and OAGN. After crystallisation, the intrusion was overturned and then offset by the Jameson Fault resulting in the apparent ‘reverse’ chemical and mineral trends in Nebo–Babel.  相似文献   
386.
387.
Numerical modelling of depositional sequences in half-graben rift basins   总被引:1,自引:0,他引:1  
ABSTRACT A three‐dimensional numerical model of sediment transport and deposition in coarse‐grained deltas is used to investigate the controls on depositional sequence variability in marine half‐graben extensional basins subject to eustatic sea‐level change. Using rates of sea‐level change, sediment supply and fault slip reported from active rift basins, the evolution of deltas located in three contrasting structural settings is documented: (1) footwall‐sourced deltas in high‐subsidence locations near the centre of a fault segment; (2) deltas fed by large drainage catchments at fault tips; and (3) deltas sourced from drainage catchments on the hangingwall dip slope. Differences in the three‐dimensional form and internal stratigraphy of the deltas result from variations in tilting of the hangingwall and the impact of border fault slip rates on accommodation development. Because subsidence rates near the centre of fault segments are greater than all but the fastest eustatic falls, footwall‐sourced deltas lack sequence boundaries and are characterized by stacked highstand systems tracts. High subsidence and steep bathymetry adjacent to the fault result in limited progradation. In contrast, the lower subsidence rate settings of the fault‐tip and hangingwall dip‐slope deltas mean that they are subject to relative sea‐level fall and associated fluvial incision and forced regression. Low gradients and tectonic tilting of the hangingwall influence the geometry of these deltas, with fault‐tip deltas preferentially prograding axially along the fault, creating elongate delta lobes. In contrast, broad, sheet‐like delta lobes characterize the hangingwall dip‐slope deltas. The model results suggest that different systems tracts may be coeval over length scales of several kilometres and that key stratal surfaces defining and subdividing depositional sequences may only be of local extent. Furthermore, the results highlight pitfalls in sequence‐stratigraphic interpretation and problems in interpreting controlling processes from the preserved stratigraphic product.  相似文献   
388.
Three new Middle–Late Ordovician and two new Early Carboniferous paleomagnetic poles have been obtained from the North Tien Shan Zone (NTZ) of the Ural–Mongol belt in Kyrgyzstan and Kazakhstan. Paleolatitudes for the Carboniferous are unambiguously northerly and average 15.5°N, whereas the Ordovician paleolatitudes (6°, 9°, and 9°) are inferred to be southerly, given that a very large (180°) rotation of the NTZ would be necessary during the middle Paleozoic if the other polarity option was chosen. Thus, the NTZ drifted northward during much of the Paleozoic; east–west drift cannot be determined, as is well known, from paleomagnetic data. In addition, detailed thermal demagnetization analysis reveals two overprints, one of recent age and the other of Permian age, which is a time of strong deformation in the NTZ. The paleolatitude of the combined Permian overprint is 30.5+2°N. The paleolatitudes collectively track those predicted for the area by extrapolation from Baltica very well, but are different from those of Siberia for Ordovician times. This finding is compatible with Sengör and Natal'in's [Sengör, A.M.C., Natal'in, B.A., 1996. Paleotectonics of Asia: fragments of a synthesis. In: Yin A., Harrison, M. (Eds.), The Tectonic Evolution of Asia. Cambridge Univ. Press, Cambridge, pp. 486–640] model of tectonic evolution of the Ural–Mongol belt and disagrees with the models of other researchers. Declinations of the Ordovician and Early Carboniferous results range from northwesterly to northeasterly, and are clearly affected by local relative rotations, which seem characteristic for the entire NTZ, because the Permian overprint declinations also show such a spread. Apparently, the important latest Paleozoic–Triassic deformation involved shear zone-related rotations as well as folding and significant granitic intrusions.  相似文献   
389.
390.
The Kesrouane Formation, which is characterized by pervasive dolomitization, has a stratigraphic thickness that exceeds 1000 m. It is part of a broad carbonate platform deposited in the Levant region and represents 60% of the Lebanese Jurassic rocks. Two genetically distinct dolostones are recognized within this unit: (1) fine‐to‐medium crystalline non‐planar grey dolostone; and (2) coarse‐crystalline planar beige dolostone. The former is stratabound and of Early Jurassic age (87Sr/86Sr = 0·707455). This dolostone locally exhi‐bits pseudomorphs of evaporite nodules, pointing towards seepage‐reflux dolomitization by hypersaline‐ to marine‐related fluids. Exposures of the coarse‐crystalline dolostone are associated with regional pre‐Cretaceous faults, along which Late Jurassic volcanics also occur. Sedimentological and diagenetic considerations coupled with microthermometry support a hydrothermal origin for this dolostone, with TH values of primary inclusions between 50 and 80 °C. The related dolomitizing fluids are mesosaline (3·5–12·0 eq. wt% NaCl), and are believed to result from the mixing of evaporative brines and sea water. Dolomitization is thus believed to have occurred in two stages, whereby fluids invaded the host rocks first by seepage‐reflux, explaining the resulting Early Jurassic stratabound dolostone, and later through fracture flow along the faults associated with the Late Jurassic volcanism, explaining the coarse‐crystalline hydrothemal dolostone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号