首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   20篇
  国内免费   6篇
测绘学   12篇
大气科学   46篇
地球物理   84篇
地质学   145篇
海洋学   32篇
天文学   61篇
综合类   1篇
自然地理   78篇
  2022年   2篇
  2021年   10篇
  2020年   9篇
  2019年   3篇
  2018年   11篇
  2017年   13篇
  2016年   9篇
  2015年   12篇
  2014年   12篇
  2013年   20篇
  2012年   17篇
  2011年   22篇
  2010年   26篇
  2009年   31篇
  2008年   24篇
  2007年   22篇
  2006年   23篇
  2005年   18篇
  2004年   20篇
  2003年   20篇
  2002年   15篇
  2001年   11篇
  2000年   12篇
  1999年   11篇
  1998年   12篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1989年   5篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1969年   1篇
  1952年   1篇
  1947年   1篇
排序方式: 共有459条查询结果,搜索用时 31 毫秒
111.
The lateral propagation of faults and folds is known to be an important process during the development of mountain belts, but little is known about the manner in which along‐strike fault–fold growth is expressed in pre‐ and syntectonic (growth) strata. We use a coupled tectonic and stratigraphic model to investigate the along‐strike stratigraphic expression of fault‐related folds/uplifts that grow in both the transport and strike directions. We consider faults that propagate following a quadratic (nonself‐similar evolution) or linear (self‐similar evolution) scaling law, using different slip distributions per episode of fault propagation, under general background sedimentation. We find that the long‐strike geometry of pre‐ and syntectonic strata and the geometry of growth axial surfaces reflect the mode of fault propagation. The geometry of strata observed in the model is similar to that observed in natural contractional structures when: (1) the evolution of the fault is nonself‐similar, or (2) the fault grows as a result of thrust faulting events with similar displacements along strike that are terminated abruptly at the fault tips.  相似文献   
112.
Using the unprecedented observational facilities deployed duringthe 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99),we found three distinct turbulent events on the night of 18October 1999. These events resulted from a density current,solitary wave, and internal gravity wave, respectively. Our studyfocuses on the turbulence intermittency generated by the solitarywave and internal gravity wave, and intermittent turbulenceepisodes associated with pressure change and wind direction shiftsadjacent to the ground. Both the solitary and internal gravitywaves propagated horizontally and downward. During the passage ofboth the solitary and internal gravity waves, local thermal andshear instabilities were generated as cold air was pushed abovewarm air and wind gusts reached to the ground. These thermal andshear instabilities triggered turbulent mixing events. Inaddition, strong vertical acceleration associated with thesolitary wave led to large non-hydrostatic pressure perturbationsthat were positively correlated with temperature. The directionaldifference between the propagation of the internal gravity waveand the ambient flow led to lateral rolls. These episodic studiesdemonstrate that non-local disturbances are responsible for localthermal and shear instabilities, leading to intermittentturbulence in nocturnal boundary layers. The origin of thesenon-local disturbances needs to be understood to improve mesoscalenumerical model performance.  相似文献   
113.
The synthesis of paleoclimatic archives provided by loess and alluvial sequences of central Argentina has been hindered by the lack of a cohesive lithostratigraphic framework extending across the Chaco-Pampean plains and catchments of the Rios Desaguadero, Colorado, and Negro. This condition originates in part from the dearth of absolute chronological controls. The occurrence of discrete tephra layers across this region may provide an opportunity to address this deficiency if a tephrochronological framework can be established. The potential of such a project is assessed within the context of a pilot study constrained within alluvial sequences of central western Argentina proximal to potential source vents in the Southern Volcanic Zone. The intersite discrimination and correlation of tephra layers on a geochemical basis is examined, with indirect chronological control for the eruption of each generated by optical dating. Alluvial sediments on either side of each of five tephra units at a type site were dated using the optically stimulated luminescence of fine-silt-sized quartz, thus providing an age control on each tephra (ca. 24,000, 30,000, 32,000, 39,000, and 48,000 yr). The geochemical composition of each tephra was derived. Using these data, tephra layers at other sites in the study area were geochemically analyzed and, in instances of statistical concordance in major oxide structure, correlated to the type site and therefore ascribed ages. This methodology identified a further sixth volcanic event between ca. 24,000 and 30,000 yr not registered by type-site tephras. The extension of this initial tephrochronological framework beyond the alluvial sequences of central western Argentina is encouraged by the occurrence of geochemically distinct tephra verified and dated in this study.  相似文献   
114.
Multi-gas Emissions Pathways to Meet Climate Targets   总被引:1,自引:1,他引:1  
So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method ‘Equal Quantile Walk’ (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by ‘walking along equal quantile paths’ of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See for EQW-software and data.  相似文献   
115.
116.
117.
Within a large collection of lavas from the Roccamonfina volcano are rocks which represent the most mafic samples yet recorded from Roccamonfina and which are amongst the least differentiated lavas found in the Roman co-magmatic region as a whole. These rocks extend both high-K and low-K series to more primitive values. However, petrographic and geochemical considerations rule out a primary origin, and even these mafic samples appear to record the effects of repeated episodes of fractional crystallization and hybridization. Relatively potassic samples from the low-K series are apparently transitional between low-K and high-K series, as previously delineated. However, these intermediate-K samples are not transitional in their Sr isotopic composition, suggesting that there is no continuum between low-K and high-K magma source regions. Rather, the compositional range within the low-K series appears predominantly to reflect variation in the degree of melting of a common mantle source. Analysis of the low-K series data, using an inverse method suggests a source containing amphibole and garnet, and indicates that these phases were consumed during the melting processes responsible for the low-K series magmas. The role of amphibole is further indicated by the association of low K2O with elevated Rb concentration and, for example, higher Ce/Yb. Such variations are taken to reflect the consumption of high K/Rb amphibole during the initial phase of partial melting.  相似文献   
118.
Estimating Variogram Uncertainty   总被引:10,自引:0,他引:10  
The variogram is central to any geostatistical survey, but the precision of a variogram estimated from sample data by the method of moments is unknown. It is important to be able to quantify variogram uncertainty to ensure that the variogram estimate is sufficiently accurate for kriging. In previous studies theoretical expressions have been derived to approximate uncertainty in both estimates of the experimental variogram and fitted variogram models. These expressions rely upon various statistical assumptions about the data and are largely untested. They express variogram uncertainty as functions of the sampling positions and the underlying variogram. Thus the expressions can be used to design efficient sampling schemes for estimating a particular variogram. Extensive simulation tests show that for a Gaussian variable with a known variogram, the expression for the uncertainty of the experimental variogram estimate is accurate. In practice however, the variogram of the variable is unknown and the fitted variogram model must be used instead. For sampling schemes of 100 points or more this has only a small effect on the accuracy of the uncertainty estimate. The theoretical expressions for the uncertainty of fitted variogram models generally overestimate the precision of fitted parameters. The uncertainty of the fitted parameters can be determined more accurately by simulating multiple experimental variograms and fitting variogram models to these. The tests emphasize the importance of distinguishing between the variogram of the field being surveyed and the variogram of the random process which generated the field. These variograms are not necessarily identical. Most studies of variogram uncertainty describe the uncertainty associated with the variogram of the random process. Generally however, it is the variogram of the field being surveyed which is of interest. For intensive sampling schemes, estimates of the field variogram are significantly more precise than estimates of the random process variogram. It is important, when designing efficient sampling schemes or fitting variogram models, that the appropriate expression for variogram uncertainty is applied.  相似文献   
119.
Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, DM=9.3°) and early Late Proterozoic (ca. 850–900 Ma) at 10°S, 163°E (dp=3.5°, DM=7.0°). A new 40Ar/39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred 200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号