全文获取类型
收费全文 | 175篇 |
免费 | 4篇 |
国内免费 | 4篇 |
专业分类
测绘学 | 13篇 |
大气科学 | 13篇 |
地球物理 | 28篇 |
地质学 | 87篇 |
海洋学 | 9篇 |
天文学 | 21篇 |
综合类 | 4篇 |
自然地理 | 8篇 |
出版年
2022年 | 7篇 |
2021年 | 3篇 |
2020年 | 4篇 |
2019年 | 4篇 |
2018年 | 22篇 |
2017年 | 10篇 |
2016年 | 4篇 |
2015年 | 10篇 |
2014年 | 12篇 |
2013年 | 10篇 |
2012年 | 10篇 |
2011年 | 21篇 |
2010年 | 14篇 |
2009年 | 15篇 |
2008年 | 7篇 |
2007年 | 6篇 |
2006年 | 5篇 |
2005年 | 2篇 |
2004年 | 2篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1997年 | 1篇 |
1993年 | 1篇 |
1990年 | 1篇 |
1983年 | 1篇 |
1979年 | 2篇 |
1976年 | 2篇 |
1974年 | 1篇 |
排序方式: 共有183条查询结果,搜索用时 15 毫秒
171.
Kamlesh Verma Sanjeeb Bhattacharya A. M. Asim Ansari Prakash K. Srivastava Amit Dharwadkar 《Journal of the Geological Society of India》2014,83(5):532-534
Eleven glacial sediment samples collected from different elevation of Jutulsessen Nunatak, Gjelsvikfjella of East Antarctica were studied for the clay mineralogical analysis using X-ray diffraction technique. The result shows prominent peak at 10, and 3.34 Å suggesting the presence of biotite possibly derived from the catchment where biotite rich granite gneisses are exposed. The detailed investigation on the shape of biotite peak of certain samples shows the signs of alteration of biotite in to a mixed layer containing tri-octahedral smectite (low charge vermiculite). The presence of mixed layer along with the biotite is found to be associated with the samples of lower geomorphic level. The progressive alteration of clay sized biotite to form a mixed layer in the lower horizons of Jutulsessen Nunatak is probably due to the periodic accumulation of melt-water during the austral summer. 相似文献
172.
Influence of wave climate on architecture and landscape characteristics of Posidonia oceanica meadows 下载免费PDF全文
Seagrass meadow characteristics, including distribution, shape, size and within‐meadow architectural features, may be influenced by various physical factors, including hydrodynamic forces. However, such influences have hardly been assessed for meadows of the ecologically important and endemic Mediterranean seagrass Posidonia oceanica. The distribution of P. oceanica meadows at five sites in the Maltese Islands was mapped to a depth of c. 15 m using a combination of aerial photography and SCUBA diving surveys. Estimates of wind‐generated wave energy and energy attenuated by depth were computed using the hydrodynamic model WEMo (Wave Exposure Model). Metrics for P. oceanica landscape features were calculated using FRAGSTATS for replicate 2500 m2 subsamples taken from the seagrass habitat maps in order to explore the influence of wave dynamics at the landscape scale. Data on within‐meadow architectural attributes were collected from five sites and analysed for relationships with wave energy. The results indicate that landscape and architectural features of P. oceanica meadows located within the 6–11 m depth range are significantly influenced by wave climate. Posidonia oceanica meadows tend to be patchier and have low overall cover, more complex patch shapes and reduced within‐patch architectural complexity along a wave exposure gradient from low to high energy. The findings from the present study provide new insight into the influence of hydrodynamic factors on the natural dynamism of P. oceanica meadow landscape and architecture, which has implications for the conservation and management of the habitat. 相似文献
173.
Arvind Chandra Pandey Amit Kumar A. T. Jeyaseelan 《Journal of the Indian Society of Remote Sensing》2013,41(1):141-155
In the present study, the Cartosat-I digital elevation model (DEM) was utilized to deduce the vertical characteristics of Ranchi urban area and its relation to long term built-up expansion (1927–2010). The DEM represents moderate variation in terrain relief ranging from 595 m to 754 m with majority of area exhibiting upto 3° of slope and 3° to 6° indicating flat to undulating nature of terrain in Ranchi township. The DEM was used to generate location of sinks within urban area, which are generally delineated along the drainage channels, adjacent to high-rise built-up land and along the elevated road network. The pattern of urban sprawl over the eight decades (1927–2010) were examined with reference to terrain relief zones, which indicated that the built-up growth was mainly taken place over the elevation range of moderate (620–660 m) (67.0%) and high relief (660–680 m) (19.8%) zones. Although earlier preference for built-up development was more in high elevation zones (660–680 m), the low elevation zones (<600–620 m) are now preferred for multistoried built-up land development where better groundwater availability occur. The spatial pattern of vertical growth of built-up land was assessed using contour density obtained from Cartosat-I DEM. The results show that the high density contours predominately correspond to hilly area and high-rise buildings at majority of locations. The urban sprawl pattern and population trend exhibited rapid increase in vertical built-up growth after 1996 indicating beginning of urban densification in Ranchi township. 相似文献
174.
We suggest that planets, brown dwarfs, and even low mass stars can be formed by fragmentation of protoplanetary disks around very massive stars (M ? 100 M⊙). We discuss how fragmentation conditions make the formation of very massive planetary systems around very massive stars favorable. Such planetary systems are likely to be composed of brown dwarfs and low mass stars of ~0.1–0.3 M⊙, at orbital separations of ~ few × 100–104 AU. In particular, scaling from solar-like stars suggests that hundreds of Mercury-like planets might orbit very massive stars at ~103 AU where conditions might favor liquid water. Such fragmentation objects can be excellent targets for the James Webb Space Telescope and other large telescopes working in the IR bands. We predict that deep observations of very massive stars would reveal these fragmentation objects, orbiting in the same orbital plane in cases where there are more than one object. 相似文献
175.
Himalayan basins have considerable snow‐ and glacier‐covered areas, which are an important source of water, particularly during summer season. In the Himalayan region, in general, the glacier melt season is considered to be from May to October. Changes in hydrological characteristics of the runoff over the melt season can be understood by studying the variation in time to peak and time lag between melt generation and its emergence as runoff. In the present study, the runoff‐delaying characteristics of Gangotri Glacier, one of the largest glaciers in the Indian Himalayas, have been studied. For this purpose, hourly discharge and temperature data were collected near the snout of the glacier (4000 m) for three ablation seasons (2004–2006). The diurnal variations in discharge and temperature provided useful information on water storage and runoff characteristics of the glacier. In the early stages of the ablation period, poor drainage network and stronger storage characteristics of the glaciers due to the presence of seasonal snow cover resulted in a much delayed response of melt water, providing a higher time lag and time to peak as compared to the peak melt season. A comparison of runoff‐delaying parameters with the discharge ratio clearly indicated that changes in time lag and time to peak are inversely correlated with variations in discharge. Impact of such meltwater storage and delaying characteristics of glaciers on hydropower projects being planned/developed on glacier‐fed streams in India has been discussed. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
176.
Our understanding of sea-cliff erosion processes and their response to recent and/or projected environmental changes such as sea-level rise, climate change and anthropogenic development hinges on our ability to quantify sea-cliff retreat rates and their variability through time. Here, we focus on Israel's Mediterranean ‘Sharon’ sea-cliff as a case study for examining the significance of recent short-term (i.e. annual to decadal) cliff-top retreat rates that appear to exceed longer-term rates of ‘background’ (i.e. centennial to millennial) retreat by 1–2 orders of magnitude. We demonstrate that an inherent sampling bias in rate estimates inferred from observation intervals shorter than process episodicity can also explain such a pattern. This potential ambiguity leads to a striking paradox where despite highly accurate and robust documentation of recent cliff-top retreat, such as that obtained from aerial photographs and/or instrumental surveys, the short-term retreat rates of episodically retreating sea cliffs remain poorly constrained. To address this key data gap along the Sharon sea cliff we employed a sediment budget approach that focuses on quantifying the continuous wave scouring of cliff-collapsed material from the shore platform as a rate-limiting process for episodic retreat of the cliff above. We used four high-resolution (0.5 m/pixel) airborne LiDAR data sets acquired between 2006 and 2015 to determine short-term maximum retreat rates of up to ~0.08 m/yr during this nine-year period. These modern retreat rates compare to the cliff's background retreat rate of 0.03 to 0.09 m/yr since the mid-Holocene, as determined herein from multiple geologic and archeological observations. Our results demonstrate that previously reported twentieth century cliff-top retreat rates for this sea cliff, which range up to values of several meters per year, are biased and that sea-cliff erosion rates have not yet been significantly impacted by recent environmental changes in the eastern Mediterranean basin, such as the restriction of sediment supply following emplacement of the Nile's Aswan dam system. © 2018 John Wiley & Sons, Ltd. 相似文献
177.
Arindam Chakraborty Amit K. Ghosh Abhijit Mazumder 《Journal of the Geological Society of India》2017,90(4):428-436
Petrographic thin section analysis of the samples collected from the type section of Neil West Coast Formation, situated in the west coast of Neil Island yielded moderately preserved coralline red algae, benthic and planktic foraminifers, coral fragments, echinoid spines and gastropod shells. The coralline red algae are represented by both non-geniculate and geniculate forms. The non-geniculate forms belong to melobesids, lithophylloids and mastophoroides. The geniculate forms are represented by species of Amphiroa, Corallina, and Jania. However, the diversity and abundance of coralline algal forms are less in comparison to the benthic foraminifers those are represented by Amphistegina, Neorotalia, Ammonia, Elphidium, Operculina, Assilina, Amphisorus and texularids. Planktic foraminifers like Globigerinoides and other biogenic components viz., gastropod shells, echinoid spines and coral fragments are also common. A foraminiferal-algal grainstone facies has been recognized as observed in the field as well as in thin section analysis. The overall assemblage of the biogenic components and facies analysis indicate intertidal to near shore environment of deposition with high energy condition and increased hydrodynamic activity. 相似文献
178.
In this study, an attempt has been made to estimate land surface temperatures (LST) and spectral emissivities over a hard rock terrain using multi-sensor satellite data. The study area, of about 6000 km2, is a part of Singhbhum-Orissa craton situated in the eastern part of India. TIR data from ASTER, MODIS and Landsat ETM+ have been used in the present study. Telatemp Model AG-42D Portable Infrared Thermometer was used for ground measurements to validate the results derived from satellite (MODIS/ASTER) data. LSTs derived using Landsat ETM+ data of two different dates have been compared with the satellite data (ASTER and MODIS) of those two dates. Various techniques, viz., temperature and emissivity separation (TES) algorithm, gray body adjustment approach in TES algorithm, Split-Window algorithms and Single Channel algorithm along with NDVI based emissivity approach have been used. LSTs derived from bands 31 and 32 of MODIS data using Split-Window algorithms with higher viewing angle (50°) (LST1 and LST2) are found to have closer agreement with ground temperature measurements (ground LST) over waterbody, Dalma forest and Simlipal forest, than that derived from ASTER data (TES with AST 13). However, over agriculture land, there is some uncertainty and difference between the measured and the estimated LSTs for both validation dates for all the derived LSTs. LST obtained using Single Channel algorithm with NDVI based emissivity method in channel 13 of ASTER data has yielded closer agreement with ground measurements recorded over vegetation and mixed lands of low spectral contrast. LST results obtained with TIR band 6 of Landsat ETM+ using Single Channel algorithm show close agreement over Dalma forest, Simlipal forest and waterbody with LSTs obtained using MODIS and ASTER data for a different date. Comparison of LSTs shows good agreement with ground measurements in thermally homogeneous area. However, results in agriculture area with less homogeneity show difference of LST up to 2°C. The results of the present study indicate that continuous monitoring of LST and emissivity can be undertaken with the aid of multi-sensor satellite data over a thermally homogeneous region. 相似文献
179.
Ashok Kumar Patel Snehamoy Chatterjee Amit Kumar Gorai 《Arabian Journal of Geosciences》2017,10(5):107
The product of the mining industry (ore) is considered to be the raw material for the metal industry. The destination policy of the raw materials of iron mine is highly dependent on the class of iron ores. Thus, regular monitoring of iron ore class is the urgent need at the mine for accurately assigning the destination policy of raw materials. In most of the iron ore mines, decisions on ore class are made based on either visual inspection by the geologist or laboratory analyses of the ores. This process of ore class estimation is time consuming and also challenging for continuous monitoring. Thus, the present study attempts to develop an online vision-based technology for classification of iron ores. A laboratory-scale transportation system is designed using conveyor belt for online image acquisition. A multiclass support vector machine (SVM) model was developed to classify the iron ores. A total of 2200 images were captured for developing the ore classification model. A set of 18 features (9-histogram-based colour features in red, green and blue (RGB) colour space and 9-texture features based on intensity (I) component of hue, saturation and intensity (HSI) colour space) were extracted from each image. The performance of the SVM model was evaluated using four confusion matrix parameters (sensitivity, accuracy, misclassification and specificity). The SVM model performance was also compared with the other methods like K-nearest neighbour, classification discriminant, Naïve Bayes, classification tree and probabilistic neural network. It was observed that the SVM classification model performs better than the other classification methods. 相似文献
180.
Evapotranspiration (ET) is a vital process in land surface atmosphere research. In this study, Surface Energy Balance Algorithm for Land (SEBAL) for the assessment of ET (for 23 December 2010, 8 January 2011, 24 January 2011, 9 February 2011, 25 February 2011, 29 March 2011 and 14 April 2011) from LANDSAT7-ETM+ and validation with Lysimeter data set is illustrated. It is based on the evaporative fraction concept, and it has been applied to LANDSAT7-ETM + (30 m resolution) data acquired over the Indian Agricultural Research Institute’s agricultural farm land. The ET from SEBAL was compared with Lysimeter ET using four statistical tests (root-mean-square error (RMSE), relative root-mean-square error (R-RMSE), mean absolute error (MAE), and normalized root-mean square error (NRMSE)), and each test showed a good correlation between the predicted and observed ET values. Results from this study revealed that the RMSE of crop-growing period was 0.51 mm d?1 for ETSEBAL, i.e. ETSEBAL having good accuracy with respect to observed ETLysimeter. Results were also validated using R-RMSE test, which also proved that ETSEBAL data are having good accuracy with respect to observed ETLysimeter as R-RMSE of crop-growing period is 0.19 mm d?1. MAE (0.19), NRMSE (0.21) and r2 (0.91) tests indicated that model prediction is significant, and model can be effectively used for the estimation of ET from SEBAL as input of remote sensing data sets. Finally, the SEBAL has been useful for remote agricultural land where ground-based data (Lysimeter data) are not available for daily ET (ET24 h) estimation. The temporal study of the ET24 h values analysed has revealed that the highest ET24 h values are owing to the higher development (high greenness) of crops, whereas the lower values are related to the lower development (low greenness) or null crop. 相似文献