首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
大气科学   20篇
地球物理   11篇
地质学   28篇
海洋学   2篇
天文学   5篇
自然地理   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   6篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1912年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
21.
The range of conditions of formation of lode-gold deposits from the sub-greenschist to the lower-granulite facies in Archean greenstone belts, and the generally steeply plunging, vertically continuous pipe-like or tabular geometries of individual deposits, indicate long-distance hydrothermal fluid advection along well-defined channelways in the upper and middle crust. From presently available gold solubility data, destabilisation of gold-bisulphide complexes through H2S loss from the fluid to the wallrock was the dominant gold precipitation mechanism within these hydrothermal systems as a whole. This inference is supported by the S:Au ratios of ores. Sulphur and Au precipitation in the hydrothermal system is estimated to be relatively inefficient, with only 10–50% of S or Au contained in the fluid precipitated over any kilometre length of fluid channelway. The relative inefficiency of gold precipitation allowed mineralisation over a significant depth range in a crustal profile.  相似文献   
22.
Mathematical Geosciences - A mathematical model for small-scale spatial variations in gravity above the Earth’s surface is presented. Gravity variations are treated as a Gaussian random...  相似文献   
23.
24.
Sea level rise, especially combined with possible changes in storm surges and increased river discharge resulting from climate change, poses a major threat in low-lying river deltas. In this study we focus on a specific example of such a delta: the Netherlands. To evaluate whether the country’s flood protection strategy is capable of coping with future climate conditions, an assessment of low-probability/high-impact scenarios is conducted, focusing mainly on sea level rise. We develop a plausible high-end scenario of 0.55 to 1.15 m global mean sea level rise, and 0.40 to 1.05 m rise on the coast of the Netherlands by 2100 (excluding land subsidence), and more than three times these local values by 2200. Together with projections for changes in storm surge height and peak river discharge, these scenarios depict a complex, enhanced flood risk for the Dutch delta.  相似文献   
25.
26.
In July 1974 an NO/O3 chemiluminescent instrument was used to obtain measurements of NO in the stratosphere during two balloon flights launched from Churchill (59°N, 95°W). On the first flight, an altitude profile was obtained in which the NO volume mixing ratio was observed to increase from 0.3 to 2.7 ppbv between 19 and 29.5 km. On the second flight, the mixing ratio was observed to increase from 0.25 to 2.7 ppbv between 19 and 29 km and to remain almost constant at about 2.7 ppbv from 29 to 34.5 km. On this flight, the sunset decay of NO was also obtained while the payload was at a constant float altitude of 34.5 km. These decay measurements are compared satisfactorily with the results obtained from a time dependent stratospheric model.  相似文献   
27.
The neutral gas temperature and circulation of the thermosphere are calculated for December solstice conditions near solar cycle maximum using NCAR's thermospheric general circulation model (TGCM). High-latitude heat and momentum sources significantly alter the basic solar-driven circulation during solstice. At F-region heights, the increased ion density in the summer hemisphere results in a larger ion drag momentum source for the neutral gas than in the winter hemisphere. As a result there are larger wind velocities and a greater tendency for the neutral gas to follow the magnetospheric convection pattern in the summer hemisphere than in the winter hemisphere. There is about three times more Joule heating in the summer than the winter hemisphere for moderate levels of geomagnetic activity due to the greater electrical conductivity in the summer E-region ionosphere.

The results of several TGCM runs are used to show that at F-region heights it is possible to linearly combine the solar-driven and high-latitude driven solutions to obtain the total temperature structure and circulation to within 10–20%. In the lower thermosphere, however, non-linear terms cause significant departures and a linear superposition of fields is not valid.

The F-region winds at high latitudes calculated by the TGCM are also compared to the meridional wind derived from measurements by the Fabry-Perot Interferometer (FPI) and the zonal wind derived from measurements by the Wind and Temperature Spectrometer (WATS) instruments onboard the Dynamics Explorer (DE−2) satellite for a summer and a winter day. For both examples, the observed and modeled wind patterns are in qualitative agreement, indicating a dominant control of high latitude winds by ion drag. The magnitude of the calculated winds (400–500 m s−1) for the assumed 60 kV cross-tail potential, however, is smaller than that of the measured winds (500–800 m s−1). This suggests the need for an increased ion drag momentum source in the model calculations due to enhanced electron densities, higher ion drift velocities, or some combination that needs to be further denned from the DE−2 satellite measurements.  相似文献   

28.
Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles.Average δ66Zn and δ65Cu values for streams varied from +0.02‰ to +0.46‰ and −0.7‰ to +1.4‰, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ∼0.3‰ (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.  相似文献   
29.
Simulations of the Arctic sea ice cover over the last 32 years generated by the HadGEM1 coupled climate model are able to capture the observed long term decline in mean September ice extent. HadGEM1 is also capable of producing an episode of low September ice extent of similar magnitude to the anomalously low extent observed in 2007. Using a heat budget analysis, together with diagnostics partitioning the changes in ice and snow mass into thermodynamic and dynamic components, we analyse the factors driving the long term decline in the ice mass and extent as well as those causing the modelled low ice event. The long term decline in the mass of ice and snow in HadGEM1 is largely due to extra melting during the summer, partly at the top surface of the ice, and partly via extra heating from the ocean as it warms due to the ice retreat. The episode of low summer ice extent is largely driven by the synoptic conditions over the summer moving the ice across and out of the Arctic basin, and also due to pre-conditioning of the snow and ice which is thinner than usual in the Eastern Arctic at the start of the melt season. This case study demonstrates that although HadGEM1 does not capture the persistent dipole pressure anomaly observed during the summer of 2007, it represents broadly similar mechanisms of generating a low ice extent.  相似文献   
30.
Although the frequency distribution of rock types on Tenerife shows an excess of salic over intermediate products, caution should be applied in interpreting this simply in terms of fractional crystallisation in the descent basalt-trachyte-phonolite. Field relations indicate that the volumetric relations are more meaningfully interpreted in terms of the substructure of the volcano, and the effect this has on the composition of the magma on eruption. The availability of magma for eruption should also be considered, as well as eruptions that may only sample part of a magma chamber. The length of time over which the sub-aerial volcano has grown is also an important factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号