首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   1篇
  国内免费   1篇
大气科学   3篇
地球物理   9篇
地质学   30篇
海洋学   7篇
天文学   36篇
自然地理   1篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2013年   5篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   10篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1862年   1篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
51.
The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on-board the Mars Express spacecraft (MEX) measured penetrating solar wind plasma and escaping/accelerated ionospheric plasma at very low altitudes (250 km) in the dayside subsolar region. This implies a direct exposure of the martian topside atmosphere to solar wind plasma forcing leading to energization of ionospheric plasma. The ion and electron energization and the ion outflow from Mars is surprisingly similar to that over the magnetized Earth. Narrow “monoenergetic” cold ion beams, ion beams with broad energy distributions, sharply peaked electron energy spectra, and bidirectional streaming electrons are particle features also observed near Mars. Energized martian ionospheric ions (O+, O+2, CO+2, etc.) flow in essentially the same direction as the external sheath flow. This suggests that the planetary ion energization couples directly to processes in the magnetosheath/solar wind. On the other hand, the beam-like distribution of the energized plasma implies more indirect energization processes like those near the Earth, i.e., energization in a magnetized environment by waves and/or parallel (to B) electric fields. The general conditions for martian plasma energization are, however, different from those in the Earth's magnetosphere. Mars has a weak intrinsic magnetic field and solar wind plasma may therefore penetrate deep into the dense ionospheric plasma. Local crustal magnetization, discovered by Acuña et al. [Acuña, M.J., Connerey, J., Ness, N., Lin, R., Mitchell, D., Carlsson, C., McFadden, J., Anderson, K., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P., Cloutier, P., 1999. Science 284, 790-793], provide some dayside shielding against the solar wind. On the other hand, multiple magnetic anomalies may also lead to “hot spots” facilitating ionospheric plasma energization. We discuss the ASPERA-3 findings of martian ionospheric ion energization and present evidences for two types of plasma energization processes responsible for the low- and mid-altitude plasma energization near Mars: magnetic field-aligned acceleration by parallel electric fields and plasma energization by low frequency waves.  相似文献   
52.
53.
Plasma and magnetic field data from PROGNOZ-7 have revealed that solar wind (magnetosheath) plasma elements may penetrate the dayside magnetopause surface and form high density regions with enhanced cross-field flow in the boundary layer.The injected magnetosheath plasma is observed to have an excess drift velocity as compared to the local boundary layer plasma, comprising both “cold” plasma of terrestrial origin and a hot ring current component. A differential drift between two plasma components can be understood in terms of a momentum transfer process driven by an injected magnetosheath plasma population. The braking action of the injected plasma may be described as a dynamo process where particle kinetic energy is transferred into electromagnetic energy (electric field). The generated electric field will force the local plasma to ε×B-drift, and the dynamo region therefore also constitutes an accelerator region for the local plasma. Whenever energy is dissipated from the energy transfer process (a net current is flowing through a load), there will also be a difference between the induced electric field and the v×B term of the generator plasma. Thus, the local plasma will drift more slowly than the injected generator plasma.We will present observations showing that a relation between the momentum transferred, the injected plasma and the momentum taken up by the local plasma exists. For instance, if the local plasma density is sufficiently high, the differential drift velocity of the injected and local plasma will be small. A large fraction of the excess momentum is then transferred to the local plasma. Conversely, a low local plasma density results in a high velocity difference and a low fraction of local momentum transfer.In our study cases the “cold” plasma component was frequently found to dominate the local magnetospheric plasma density in the boundary layer. Accordingly, this component may have the largest influence on the local momentum transfer process. We will demonstrate that this also seems to be the case. Moreover we show that the accelerated “cold” plasma component may be used as a tracer element reflecting both the momentum and energy transfer and the penetration process in the dayside boundary layer.The high He+ percentage of the accelerated “cold” plasma indicates a plasmaspheric origin. Considering the quite high densities of energetic He+ found in the boundary layer, the overall low abundance of He+ (as compared to e.g. O+) found in the plasma sheet and outer ring current evidently reduces the importance of the dayside boundary layer as a plasma source in the large scale magnetospheric circulation system.  相似文献   
54.
Energetic electron fluxes from more than two years of ASPERA-3 observations are organized in different coordinate systems for the investigation of asymmetries in the global dynamics of the Martian magnetosphere. A clear asymmetry is found in the distribution of high-flux events with respect to the solar wind convective electric field (Esw) direction. These events are frequently detected below the average magnetic pile-up boundary (MPB) location at the terminator region of the hemisphere to which the Esw points and extend toward the tail. A detailed investigation of the electron fluxes at the terminator region also reveals that the largest contribution to this Esw asymmetry comes from locations of moderate or strong crustal fields. These observations have implications about reconnection processes in the terminator and provide new insight on magnetic anomaly effects in the global dynamics of the Mars-solar wind interaction.  相似文献   
55.
We report the detection of electrons due to photo-ionization of atomic oxygen and carbon dioxide in the Venus atmosphere by solar helium 30.4 nm photons. The detection was by the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) Electron Spectrometer (ELS) on the Venus Express (VEx) European Space Agency (ESA) mission. Characteristic peaks in energy for such photoelectrons have been predicted by Venus atmosphere/ionosphere models. The ELS energy resolution (ΔE/E∼7%) means that these are the first detailed measurements of such electrons. Considerations of ion production and transport in the atmosphere of Venus suggest that the observed photoelectron peaks are due primarily to ionization of atomic oxygen.  相似文献   
56.
This paper gives an overview of Cluster observations in the high-altitude cusp region of the magnetosphere. The low and mid-altitude cusps have been extensively studied previously with a number of low-altitude satellites, but only little is known about the distant part of the magnetospheric cusps. During the spring-time, the trajectory of the Cluster fleet is well placed for dayside, high-altitude magnetosphere investigations due to its highly eccentric polar orbit. Wide coverage of the region has resulted and, depending on the magnetic dipole tilt and the solar wind conditions, the spacecraft are susceptible to encounter: the plasma mantle, the high-altitude cusp, the dayside magnetosphere (i.e. dayside plasma sheet) and the distant exterior cusp diamagnetic cavity. The spacecraft either exit into the magnetosheath through the dayside magnetopause or through the exterior cusp–magnetosheath interface. This paper is based on Cluster observations made during three high-altitude passes. These were chosen because they occurred during different solar wind conditions and different inter-spacecraft separations. In addition, the dynamic nature of the cusp allowed all the aforementioned regions to be sampled with different order, duration and characteristics. The analysis deals with observations of: (1) both spatial and temporal structures at high-altitudes in the cusp and plasma mantle, (2) signatures of possible steady reconnection, flux transfer events (FTE) and plasma transfer events (PTE), (3) intermittent cold (<100 eV) plasma acceleration associated with both plasma penetration and boundary motions, (4) energetic ions (5–40 keV) in the exterior cusp diamagnetic cavity and (5) the global structure of the exterior cusp and its direct interface with the magnetosheath. The analysis is primarily focused on ion and magnetic field measurements. By use of these recent multi-spacecraft Cluster observations we illustrate the current topics under debate pertaining to the solar wind–magnetosphere interaction, for which this region is known to be of major importance.  相似文献   
57.
58.
Experimentation with cupric salts and aqueous sulphide solutions at room temperature and pressure resulted in the formation of normal and blaubleibender covellite. Blaubleibender covellite is formed at higher pH and lower Eh values than normal covellite. The experimental pH/Eh values for normal covellite formation fall within the theoretical CuS stability field. Blaubleibender was produced at pH/Eh values outside this area. Variations in pH and Eh during the course of the experimental runs showed that normal covellite formed by the simple reaction: Cu2++HS=CuS+H+; blaubleibender covellite formation on the other hand involves solid state reduction of an initial normal covellite precipitate. Cell volume and formation pH show a straight line relationship in normal covellite which is not observed with blaubleibender. Blaubleibender covellite can be formed from aqueous solution at low temperatures and pressures. The experimental results indicate that it is a metastable intermediary in the reduction of normal covellite to more reduced, stable, copper sulphides. The copper sulphide formed from sedimentary processes in a normal marine environment should initially be normal covellite, or transitory blaubleibender covellite which may be reduced during diagenesis.
Zusammenfassung Synthetische Versuche mit Kupfersalzen und wässrigen Sulfidlösungen bei Zimmertemperatur und atmosphärischem Druck ergaben die Bildung von normalem und blaubleibendem Covellin. Blaubleibender Covellin wird bei höheren pH- und niedereren Eh-Werten gebildet als normaler Covellin. Die pH/Eh-Werte für normalen Covellin fallen in das theoretische Stabilitätsfeld von CuS. Die Bildung von blaubleibendem Covellin erfolgte bei pH/Eh-Werten außerhalb dieses Feldes. Systematische Veränderungen der pH- und Eh-Werte während der Syntheseversuche ließen erkennen, daß die Bildung von normalem Covellin nach folgender einfacher Reaktion verläuft: Cu2++HS=CuS+H+; die Bildung von blaubleibendem Covellin dagegen erfolgt unter teilweiser Reduktion eines vorher gefällten Niederschlags von normalem Covellin. Im Gegensatz zum blaubleibenden Covellin zeigt der normale Covellin eine geradlinige Beziehung zwischen Zellvolumen und Formations-pH-Wert. Blaubleibender Covellin kann aus wässrigen Lösungen bei niederen Temperaturen und niederem Druck gebildet werden. Die Untersuchungsergebnisse zeigen, daß er eine metastabile Zwischenform zu normalem Covellin und stärker reduzierten stabilen Kupfersulfiden bildet. Die Kupfersulfide, die sich während eines Sedimentationsprozesses in einer normalen marinen Facies bilden, werden anfänglich aus normalem Covellin bestehen oder vorübergehend aus blaubleibendem Covellin, mit einer möglichen Reduktion während der Diagenese.
  相似文献   
59.
A numerical solution of the dispersion equation for electromagnetic waves in a hot magnetized collisionless plasma has shown that, in a current-free ionospheric plasma, the distortion of the electron distribution function reproducing the downward flow of a thermal electron component and the compensating upward flow of the suprathermal electrons, which are responsible for the resulting heat flux, can destabilize quasi-electrostatic ion sound waves. The numerical analysis, performed with ion densities and electron temperature taken from the data recorded by the Interkosmos-24 (IK-24, Aktivny) satellite, is compared with a VLF spectrum registered at the same time on board. This spectrum shows a wide frequency band emission below the local ion plasma frequency. The direction of the electron heat flux inherent to the assumed model of VLF emission generation is discussed.  相似文献   
60.
Storglaciären is a 3.2 km long polythermal valley glacier in northern Sweden. Since 1994 a number of small (1–2 m high) transverse debris‐charged ridges have emerged at the ice surface in the terminal zone of the glacier. This paper presents the results of a combined structural glaciological, isotopic, sedimentological and ground‐penetrating radar (GPR) study of the terminal area of the glacier with the aim of understanding the evolution of these debris‐charged ridges, features which are typical of many polythermal glaciers. The ridges originate from steeply dipping (50–70°) curvilinear fractures on the glacier surface. Here, the fractures contain bands of sediment‐rich ice between 0.2 and 0.4 m thick composed of sandy gravel and diamicton, interpreted as glaciofluvial and basal glacial material, respectively. Structural mapping of the glacier from aerial photography demonstrates that the curvilinear fractures cannot be traced up‐glacier into pre‐existing structures visible at the glacier surface such as crevasses or crevasse traces. These curvilinear fractures are therefore interpreted as new features formed near the glacier snout. Ice adjacent to these fractures shows complex folding, partly defined by variations in ice facies, and partly by disseminated sediment. The isotopic composition (δ18O) of both coarse‐clear and coarse‐bubbly glacier ice facies is similar to the isotopic composition of the interstitial ice in debris layers that forms the debris‐charged ridges, implying that none of these facies have undergone any significant isotopic fractionation by the incomplete freezing of available water. The GPR survey shows strong internal reflections within the ice beneath the debris‐charged ridges, interpreted as debris layers within the glacier. Overall, the morphology and distribution of the fractures indicate an origin by compressional glaciotectonics near the snout, either at the thermal boundary, where active temperate glacier ice is being thrust over cold stagnant ice near the snout, or as a result of large‐scale recumbent folding in the glacier. Further work is required to elucidate the precise role of each of these mechanisms in elevating the basal glacial and glaciofluvial material to the ice surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号