In the sub‐humid Western Boreal Plains of Alberta, where evapotranspiration often exceeds precipitation, trembling aspen (Populus tremuloides Michx.) uplands often depend on adjacent peatlands for water supply through hydraulic redistribution. Wildfire is common in the Boreal Plains, so the resilience of the transfer of water from peatlands to uplands through roots immediately following wildfire may have implications for aspen succession. The objective of this research was to characterize post‐fire peatland‐upland hydraulic connectivity and assess controls on aspen transpiration (as a measure of stress and productivity) among landscape topographic positions. In May 2011, a wildfire affected 90,000 ha of north central Alberta, including the Utikuma Region Study Area (URSA). Portions of an URSA glacio‐fluval outwash lake catchment were burned, which included forests and a small peatland. Within 1 year after the fire, aspen were found to be growing in both the interior and margins of this peatland. Across recovering land units, transpiration varied along a topographic gradient of upland midslope (0.42 mm hr?1) > upland hilltop (0.29 mm hr?1) > margin (0.23 mm hr?1) > peatland (0.10 mm hr?1); similar trends were observed with leaf area and stem heights. Although volumetric water content was below field capacity, P. tremuloides were sustained through roots present, likely before fire, in peatland margins through hydraulic redistribution. Evidence for this was observed through the analysis of oxygen (δ18O) and hydrogen (δ2H) isotopes where upland xylem and peat core signatures were ?10.0‰ and ?117.8‰ and ?9.2‰ and ?114.0‰, respectively. This research highlights the potential importance of hydraulic redistribution to forest sustainability and recovery, in which the continued delivery of water may result in the encroachment of aspen into peatlands. As such, we suggest that through altering ecosystem services, peatland margins following fire may be at risk to aspen colonization during succession. 相似文献
This paper presents results of a small scale study that utilized particle-tracking techniques to evaluate transport of river
water through an alluvial aquifer in a bank infiltration testing site in El Paso, Texas, USA. The particle-tracking survey
was used to better define filtration parameters. Several simulations were generated to allow visualization of the effects
of well placement and pumping rate on flow paths, travel time, the size of the pumping influence zone, and proportion of river-derived
water and groundwater mixing in the pumping well. Simulations indicate that migration of river water into the aquifer is generally
slow. Most water does not arrive at the well by the end of an 18-day pumping period at 0.54 m3/min pumping rate for a well located 18 m from the river. Forty-four percent of the water pumped from the well was river water.
The models provided important information needed to design appropriate sampling schedules for bank filtration practices and
ensured meeting adequate soil-retention times. The pumping rate has more effect on river water travel time than the location
of the pumping well from the river. The examples presented in this paper indicate that operating the pumping well at a doubled
distance from the river increased the time required for the water to travel to the well, but did not greatly change the capture
zone. 相似文献
Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2–7.2), were sub-oxic to oxic (Eh 59–453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L−1. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (FeOx) relative to the Na-dithionite extractable fraction (FeDi), with generally high FeOx:FeDi ratios (0.52–0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe5HO3·4H2O) with lesser amounts of goethite (α-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite (γ-FeOOH), which occurred as nanoparticles as little as ∼5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea. 相似文献
Pb, O, Nd, and Sr isotopic data for the Columbia River basalts paint a complex picture for the origin of this flood basalt province. At least 3 distinct mantle sources appear to have been involved, superimposed upon which are the effects of crystal fractionation and mass exchange with evolved crustal wallrocks. To a large degree, the initiation of Columbia River volcanism and the geochemical characteristics of the basalts appear to have been influenced by subduction of the Juan de Fuca plate beneath the North American plate in a manner analogous to the origin of back-arc basins. The physical structure of the crust appears to have influenced the late stage evolution of the magmas by directing the locus of eruption to the border between the ancient continental interior and much younger crust to the south and west. This proximity to the continental interior also allowed old enriched subcontinental mantle to become involved in the very late stages of Columbia River volcanism. An important consequence of the existence of enriched mantle regions beneath continents is that the combination, crust plus enriched mantle, requires more incompatible elements to have been extracted from the remainder of the mantle than would be the case if no enriched mantle existed. 相似文献
Abstract We analyse time series records of isopleth depths derived from two extended sequences of hourly and bi‐hourly sampled profiles taken at Ocean Weather Station P during the summers of 1961 and 1969. Vertical displacements to 240‐m depth are mainly of semidiurnal frequency with r.m.s. amplitudes of 1–4 m. Displacements at diurnal and near‐inertial frequencies are typically less than a metre and have little statistical significance. Within the semidiurnal band, motions appear to be predominantly at the principal solar (S2) rather than the principal lunar (M2) semidiurnal frequency. The phase of the M2 baroclinic tide is roughly equal to that of the M2 barotropic tide (as extrapolated from coastal and seamount observations); phases of other constituents differ appreciably from barotropic values. 相似文献
We investigate winter Arctic Amplification (AA) on synoptic timescales and at regional scales using a daily version of the Arctic Amplification Index (AAI) and examine causes on a synoptic scale. The persistence, frequency and intensity of high AAI events show significant increases over the Arctic. Similarly, low AAI events are decreasing in frequency, persistence and intensity. In both cases, there are regional variations in these trends, in terms of significance and timing. Significant trends in increasing persistence, frequency and intensity of high AAI events in winter are concentrated in the period 2000–2009, with few significant trends before and after this. There are some decreases in sea-ice concentration in response to synoptic-scale AA events and these AA events can contribute to the decadal trends in AA found in other studies. A sectoral analysis of the Arctic indicates that in the Beaufort–Chukchi and East Siberian–Laptev Seas, synoptic scale high AAI events can be driven by tropical teleconnections while in other Arctic sectors, it is the intrusion of moisture-transporting synoptic cyclones into the Arctic that is most important in synoptic-scale AA. The presence of Rossby wave breaking during high AAI events is indicative of forcing from lower latitudes, modulated by variations in the jet stream. An important conclusion is that the increased persistence, frequency and intensity of synoptic-scale high AAI events make significant contributions to the interannual trend in AA.