首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4732篇
  免费   127篇
  国内免费   54篇
测绘学   108篇
大气科学   415篇
地球物理   982篇
地质学   1570篇
海洋学   424篇
天文学   882篇
综合类   11篇
自然地理   521篇
  2021年   49篇
  2020年   55篇
  2019年   72篇
  2018年   77篇
  2017年   80篇
  2016年   103篇
  2015年   115篇
  2014年   109篇
  2013年   251篇
  2012年   150篇
  2011年   227篇
  2010年   190篇
  2009年   272篇
  2008年   194篇
  2007年   181篇
  2006年   168篇
  2005年   156篇
  2004年   168篇
  2003年   166篇
  2002年   158篇
  2001年   96篇
  2000年   102篇
  1999年   98篇
  1998年   94篇
  1997年   59篇
  1996年   73篇
  1995年   65篇
  1994年   59篇
  1993年   58篇
  1992年   52篇
  1991年   67篇
  1990年   52篇
  1989年   50篇
  1988年   43篇
  1987年   67篇
  1986年   47篇
  1985年   61篇
  1984年   79篇
  1983年   59篇
  1982年   54篇
  1981年   69篇
  1980年   60篇
  1979年   50篇
  1978年   67篇
  1977年   48篇
  1976年   54篇
  1975年   36篇
  1974年   39篇
  1973年   36篇
  1971年   35篇
排序方式: 共有4913条查询结果,搜索用时 15 毫秒
211.
Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v?=?30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 Å ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120 nm to 20 μm, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6 m2, using a specialized mid infra-red focal spacecraft. Calculations (Boccaletti et al., Icarus 145, 628–636, 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie and Le Coroller 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red. Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary “Direct Imaging Field”, and limiting magnitude, approaching that of an 8-m space telescope when 1,000 apertures of 25 cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flashes which may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, Astron Astrophys 284, 689, 1994), will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue (Ragazzoni et al., MNRAS 345, 100–110, 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015–2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100 km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.  相似文献   
212.
Abstract— Puerto Lápice is a new eucrite fall (Castilla‐La Mancha, Spain, 10 May 2007). In this paper, we report its detailed petrography, magnetic characterization, mineral and bulk chemistry, oxygen and noble gas isotope systematics, and radionuclide data. Study of four thin sections from two different specimens reveal that the meteorite is brecciated in nature, and it contains basaltic and granulitic clasts, as well as recrystallized impact melt and breccia fragments. Shock veins are ubiquitous and show evidence of at least three different shock events. Bulk chemical analyses suggest that Puerto Lápice belongs to the main group of basaltic eucrites, although it has a significantly higher Cr content. Oxygen isotopes also confirm that the meteorite is a normal member of the HED suite. Noble gas abundances show typical patterns, with dominant cosmogenic and radiogenic contributions, and indicate an average exposure age of 19 ± 2 Ma, and a Pu‐fission Xe age well within typical eucrite values. Cosmogenic radionuclides suggest a preatmospheric size of about 20–30 cm in diameter.  相似文献   
213.
Using photoelectric methods we have repeated Plaskett's (1970) measurements of poleequator temperature differences. We average many limb-darkening scans to reduce statistical errors. We then analyze the differences between the average polar and equatorial scans. Plaskett's large poleequator temperature differences are not confirmed. Our data yield a pole-equator temperature difference of 1.5K±0.6K, although we cannot rule out systematic errors of 3–4 K.  相似文献   
214.
We investigate the gravitational fragmentation of expanding shells in the context of the linear thin-shell analysis. We make use of two very different numerical schemes; the flash adaptive mesh refinement code and a version of the Benz smoothed particle hydrodynamics code. We find that the agreement between the two codes is excellent. We use our numerical results to test the thin-shell approximation and we find that the external pressure applied to the shell has a strong effect on the fragmentation process. In cases where shells are not pressure-confined, the shells thicken as they expand and hydrodynamic flows perpendicular to the plane of the shell suppress fragmentation at short wavelengths. If the shells are pressure-confined internally and externally, so that their thickness remains approximately constant during their expansion, the agreement with the analytical solution is better.  相似文献   
215.
216.
We report on two ASCA observations of the high-mass X-ray binary pulsar OAO 1657−415. A short observation near mid-eclipse caught the source in a low-intensity state, with a weak continuum and iron emission dominated by the 6.4-keV fluorescent line. A later, longer observation found the source in a high-intensity state and covered the uneclipsed through mid-eclipse phases. In the high-intensity state, the non-eclipse spectrum has an absorbed continuum component due to scattering by material near the pulsar and 80 per cent of the fluorescent iron emission comes from less than 19 light-second away from the pulsar. We find a dust-scattered X-ray halo whose intensity decays through the eclipse. We use this halo to estimate the distance to the source as 7.1 ± 1.3 kpc.  相似文献   
217.
Since the 1950s, a wide variety of radio observations based on scattering by electron density fluctuations in the solar wind has provided much of our information on density fluctuations and solar wind speed near the source region of the solar wind. This paper reviews recent progress in the understanding of the nature of these density fluctuations and their relationship to features on the Sun. The results include the first measurements of fine-scale structure within coronal streamers and evidence for structure in solar wind speed in the inner corona.  相似文献   
218.
In a previous paper Adams, Cary and Cohen (1994) presented a model of a supernova. In that paper the equations of General Relativity describing the evolution of a spherically symmetric, radiating star were solved analytically. The evolution of the star was determined by the application of boundary conditions at the center and at the edge. Due to lmitations in the presupernova model, only the very slow inward motion of an unstable, degenerate core could be considered. The solution was also limited by the need to exclude a runaway term, one that increased exponentially with time. Without the exclusion of the runaway, the luminosity would have increased without bound and the mass would have become negative.This paper presents a completely analytic solution to the equations of General Relativity describing the evolution of a Type II supernova. Professor S.E. Woosley kindly gave us data on the physical variables of a 12M 0 presupernova star. In our model the core collapses within 1 s, leaving a 1.3M 0 remnant. Shortly afterward 10.6M 0 is ejected to infinity, and 0.17M 0 is radiated away in the form of neutrinos. The distance of the edge from the center increases proportionally to the two-thirds power of the time. The luminosity decreases proportionally to the inverse four-thirds power.Although the runaway solution was modified by the exploding rather than a static envelope, it must still be excluded by adjusting initial conditions. Its character is changed from an exponential to a very large power (55) of time. The removal of a degree of freedom by this exclusion leads to physically non-sensical results such as negative luminosity. The inclusion of a term describing motion of the mantle due to neutrino interactions provides the additional degree of freedom necessary for physically reasonable results.  相似文献   
219.
We deal here with the efficient starting points for Kepler's equation in the special case of nearly parabolic orbits. Our approach provides with very simple formulas that allow calculating these points on a scientific vest-pocket calculator. Moreover, srtarting with these points in the Newton's method we can calculate a root of Kepler's equation with an accuracy greater than 0.001 in 0–2 iterations. This accuracy holds for the true anomaly || 135° and |e – 1| 0.01. We explain the reason for this effect also.Dedicated to the memory of Professor G.N. Duboshin (1903–1986).  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号