首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33796篇
  免费   607篇
  国内免费   372篇
测绘学   725篇
大气科学   2214篇
地球物理   6187篇
地质学   12780篇
海洋学   3361篇
天文学   7709篇
综合类   79篇
自然地理   1720篇
  2022年   307篇
  2021年   504篇
  2020年   563篇
  2019年   622篇
  2018年   1164篇
  2017年   1117篇
  2016年   1245篇
  2015年   657篇
  2014年   1145篇
  2013年   1933篇
  2012年   1294篇
  2011年   1653篇
  2010年   1458篇
  2009年   1817篇
  2008年   1512篇
  2007年   1568篇
  2006年   1467篇
  2005年   905篇
  2004年   871篇
  2003年   821篇
  2002年   845篇
  2001年   714篇
  2000年   664篇
  1999年   554篇
  1998年   565篇
  1997年   509篇
  1996年   465篇
  1995年   412篇
  1994年   435篇
  1993年   352篇
  1992年   347篇
  1991年   352篇
  1990年   372篇
  1989年   269篇
  1988年   267篇
  1987年   333篇
  1986年   253篇
  1985年   373篇
  1984年   353篇
  1983年   315篇
  1982年   325篇
  1981年   270篇
  1980年   303篇
  1979年   241篇
  1978年   274篇
  1977年   212篇
  1976年   213篇
  1975年   206篇
  1974年   208篇
  1973年   202篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
The sea lochs (fjords) of north-west Scotland are located in a region of Europe particularly well situated to monitor changes in westerly air streams. The moisture transported in these air streams has a profound effect on regional precipitation, freshwater run-off and, in turn, sea loch circulation. The gentle slope of the regional salinity:δ18O mixing-line, defined as 0.18 ‰ per salinity unit, suggests that the temperature: δ18O relationship may be readily resolved in these coastal waters. Deep-water renewal events, both observed and predicted from empirical models, in the bottom-waters of Loch Etive provide an opportunity to assess the temperature, salinity and δ18O relationship. Predicted changes in δ18Ocalcite as a function of changing salinity (ΔS) and changing temperature (ΔT) during deep-water renewal events suggest that >80% fall above analytical detection limits. The theoretical likelihood of recording such renewal events in the "palaeoclimate" record appears to be promising, but temperature and salinity change during renewal events may have either sign. Scottish fjords, because of the relatively small impact which salinity has on δ18Owater, may provide useful study sites in palaeoclimate research, particularly where palaeotemperature is the primary record of interest.  相似文献   
892.
893.
894.
895.
In areas of broadly distributed extensional strain, the back‐tilted edges of a wider than normal horst block may create a synclinal‐horst basin. Three Neogene synclinal‐horst basins are described from the southern Rio Grande rift and southern Transition Zone of southwestern New Mexico, USA. The late Miocene–Quaternary Uvas Valley basin developed between two fault blocks that dip 6–8° toward one another. Containing a maximum of 200 m of sediment, the Uvas Valley basin has a nearly symmetrical distribution of sediment thickness and appears to have been hydrologically closed throughout its history. The Miocene Gila Wilderness synclinal‐horst basin is bordered on three sides by gently tilted (10°, 15°, 20°) fault blocks. Despite evidence of an axial drainage that may have exited the northern edge of the basin, 200–300 m of sediment accumulated in the basin, probably as a result of high sediment yields from the large, high‐relief catchments. The Jornada del Muerto synclinal‐horst basin is positioned between the east‐tilted Caballo and west‐tilted San Andres fault blocks. Despite uplift and probable tilting of the adjacent fault blocks in the latest Oligocene and Miocene time, sediment was transported off the horst and deposited in an adjacent basin to the south. Sediment only began to accumulate in the Jornada del Muerto basin in Pliocene and Quaternary time, when an east‐dipping normal fault along the axis of the syncline created a small half graben. Overall, synclinal‐horst basins are rare, because horsts wide enough to develop broad synclines are uncommon in extensional terrains. Synclinal‐horst basins may be most common along the margins of extensional terrains, where thicker, colder crust results in wider fault spacing.  相似文献   
896.
897.
898.
The Biscayarhalvøya-Holtedahlfonna zone (BHZ) in north-western Spitsbergen is a north-south trending, narrow horst, with crystalline basement rocks exposed under a Devonian unconformity. Previous K-Ar, 40Ar/39Ar and Rb-Sr analyses have confirmed the occurrence of Caledonian thermal events, and Grenvillian ages have been obtained by conventional zircon U-Pb and single-zircon Pb evaporation methods. A total of 55 zircon grains from three samples (an augen metagranite, a micaceous schist and a granitic neosome of migmatite) have been analysed by the single-zircon Pb evaporation method. The grains with the age range of ca. 950-1100 My (million years) are the major component in all three samples, suggesting tectono-thermal activity in that period. The detrital versus resorption orgin of the rounded shapes of these grains from the granitic neosome is not clear yet. Therefore, the ages of the migmatization and of the sedimentary protoliths are not concluded. The youngest presumed detrital grain from the granitic neosome is 1060 My old. The metagranite, cutting the Richarddalen unit, yielded grains with an age of ca. 950 Mya. A granite dyke with an age range of 955-968 My cuts the Biscayarhuken unit in the northern Liefdefjorden area. These indicate the sedimentary protoliths of the Richarddalen and Biscayarhuken units are pre-Neoproterozoic. The youngest detrital zircon ages of ca. 940 My indicate Neoproterozoic sedimentary protoliths of the Solanderfjellet micaceous schists. A significant population of zircon grains with an age range of 1600-1900 My in all three samples suggests a wide exposure of these rocks in the source areas during Meso- and Neoproterozoic times. Several Archean ages have also been obtained. The results are generally conformable with those obtained from north-western Spitsbergen.  相似文献   
899.
The Nanga Parbat Himalaya presents some of the greatest relief on Earth, yet sediment production and denudation rates have only been sporadically addressed. We utilized field measurements and computer models to estimate bank full discharge, sediment transport, and denudation rates for the Raikot and Buldar drainage basins (north slope of Nanga Parbat) and the upper reach of the Rupal drainage basin (south slope).The overall tasks of determining stream flow conditions in such a dynamic geomorphic setting is challenging. No gage data exist for these drainage basins, and the overall character of the drainage basins (high relief, steep flow gradients, and turbulent flow conditions) does not lend itself to either ready access or complete profiling.Cross-sectional profiles were surveyed through selected reaches of these drainage basins. These data were then incorporated into software (WinXSPRO) that aids in the characterization (stage, discharge, velocity, and shear stress) of high altitude, steep mountain stream conditions.Complete field measurements of channel depths were rarely possible (except at several bridges where the middle of the channel could actually be straddled and probed) and, when coupled with velocity measurements, provided discrete points of field-measured discharge calculations. These points were then used to calibrate WinXSPRO results for the same reach and provided a confidence level for computer-generated results.Flow calculations suggest that under near bank full conditions, the upper Raikot drainage basin produces discharges of 61 cm and moves about 11,000 tons day−1 (9980 tons day−1) of sediment through its channel. Bank full conditions on the upper portion of the Rupal drainage basin generate discharges of 84 cm and moves only about 3800 tons day−1 (3450 tons day−1) of sediment. Although the upper Rupal drainage basin moves more water, the lower slope of the drainage basin (0.03) generates a much smaller shear stress (461 Pa) than does the higher slope (0.12) of the upper Raikot drainage basin (1925 Pa).Dissolved and suspended sediment loads were measured from water/sediment samples collected throughout the day and night over a period of 10 days at the height of the summer melt season but proved to be a minor variable in transport flux. Channel bed loads were measured using a pebble count method of bank material and then used to generate ratings curves of bed loads relative to discharge volumes. When coupled with discharge data and basin area, mean annual sediment yield and denudation rates for Nanga Parbat are produced. Denudation rates calculated in this fashion range from 0.2 mm year−1 in the slower, more sluggish Rupal drainage basin to almost 6 mm year−1 in the steeper, faster flowing Raikot and Buldar drainage basins.  相似文献   
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号