首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8075篇
  免费   265篇
  国内免费   143篇
测绘学   181篇
大气科学   812篇
地球物理   1807篇
地质学   2652篇
海洋学   1085篇
天文学   1196篇
综合类   57篇
自然地理   693篇
  2021年   93篇
  2020年   106篇
  2019年   134篇
  2018年   214篇
  2017年   206篇
  2016年   243篇
  2015年   204篇
  2014年   283篇
  2013年   478篇
  2012年   292篇
  2011年   437篇
  2010年   385篇
  2009年   463篇
  2008年   367篇
  2007年   362篇
  2006年   320篇
  2005年   281篇
  2004年   274篇
  2003年   272篇
  2002年   256篇
  2001年   180篇
  2000年   185篇
  1999年   158篇
  1998年   144篇
  1997年   103篇
  1996年   98篇
  1995年   102篇
  1994年   78篇
  1993年   78篇
  1992年   75篇
  1991年   87篇
  1990年   73篇
  1989年   64篇
  1988年   58篇
  1987年   95篇
  1986年   66篇
  1985年   80篇
  1984年   109篇
  1983年   95篇
  1982年   80篇
  1981年   86篇
  1980年   87篇
  1979年   61篇
  1978年   74篇
  1977年   63篇
  1976年   62篇
  1975年   51篇
  1974年   48篇
  1973年   41篇
  1971年   39篇
排序方式: 共有8483条查询结果,搜索用时 15 毫秒
121.
Simultaneous wind, wave, and current data during 21 storms spanning four winters at Tromsøflaket (230 m depth) were analysed to determine joint probabilities of occurrence. Waves were measured with a Waverider Buoy, winds with a recording anemometer onboard a vessel and currents at up to five depths with Aandera RCM-4 current meters. Measured currents were filtered to separate tidal currents from residual currents. In most of the statistical analyses, the actual current profiles were replaced with a simplified “equivalent” profile (constant above 50 m depth) whose magnitude was chosen to give the same drag load on a single pile as the actual profile when both profiles were combined with wave orbital velocities. The data suggest that the equivalent current is weakly correlated with the wave height. Within the range of the data analysed, an in-line equivalent residual current of 30 cm sec−1 is adequate for design drag force calculations.The data presented here are used to illustrate a procedure for data analysis and are not suitable for use as design criteria.  相似文献   
122.
Image processing techniques are discussed that correct distortions in GLORIA II side scan sonar imagery including water column offset, slant-range distortion, multiple returns, aspect ratio, speckle noise, striping, and cross-track power drop-off. The software operates within NASA's ELAS image processing system and is applied to the original 12-bit GLORIA II data. Procedures are discussed for generating large scale mosaics and three-dimensional overlays with sea floor bathymetry. The results are shown in four sonographs acquired off the southern coast of California.  相似文献   
123.
124.
The southeastern Bering Sea shelf ecosystem is an important fishing ground for fin- and shellfish, and is the summer foraging grounds for many planktivorous seabirds and marine mammals. In 1997 and 1998, Northern Hemisphere climate anomalies affected the physical and biological environment of the southeastern Bering Sea shelf. The resulting anomalous conditions provided a valuable opportunity to examine how longer-term climate change might affect this productive ecosystem. We compared historical and recent zooplankton biomass and species composition data for the southeastern Bering Sea shelf to examine whether or not there was a response to the atmosphere–ocean–ice anomalies of 1997 and 1998. Summer zooplankton biomass (1954–1994) over the southeastern shelf did not exhibit a decline as previously reported for oceanic stations. In addition, zooplankton biomass in 1997 and 1998 was not appreciably different from other years in the time series. Spring concentrations of numerically abundant copepods (Acartia spp., Calanus marshallae, and Pseudocalanus spp.), however, were significantly higher during 1994–1998 than 1980–1981; spring concentrations of Metridia pacifica and Neocalanus spp. were not consistently different between the two time periods. Neocalanus spp. was the only taxon to have consistent differences in stage composition between the two time periods—CV copepodites were much more prevalent in May of the 1990s than early 1980s. Since relatively high zooplankton concentrations were observed prior to 1997, we do not attribute the high concentrations observed in the summers of 1997 and 1998 directly to the acute climate anomalies. With the present data it is not possible to distinguish between increased production (control from below) and decreased predation (control from above) to explain the recent increase in concentrations of the species examined.  相似文献   
125.
126.
127.
128.
Impacts of mixing driven by barotropic tides in a coupled climate model are investigated by using an atmosphere–ocean–ice–land coupled climate model, the GFDL CM2.0. We focus on oceanic conditions of the Northern Atlantic. Barotropic tidal mixing effects increase the surface salinity and density in the Northern Atlantic and decrease the RMS error of the model surface salinity and temperature fields related to the observational data.  相似文献   
129.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   
130.
The coastal regions of the northeast Pacific support large, economically valuable fishery resources and provide nursery areas for many fish species. Over the last few decades, there have been dramatic shifts in species abundance and composition in this area. In this paper, we examine the springtime spatial patterns in the ichthyoplankton of three oceanographically different regions, the Southeast Bering Sea, the Gulf of Alaska and the U.S. West Coast. The data examined are a subset of a larger database (comprising data from cruises conducted from 1972 to 1997) that is being used to investigate spatial, seasonal and interannual patterns in ichthyoplankton of the northeast Pacific in relation to environmental conditions. Ichthyoplankton were collected during seven cruises using 60-cm bongo nets. Spatial patterns of ichthyoplankton were examined using both classification and ordination techniques. Relative Bray-Curtis dissimilarity coefficients calculated from the log10 (n+1) of abundance data were used as input to the numerical classification of species and stations. Nonmetric multidimensional scaling was also applied to the abundance data to examine geometric patterns in the data. The numerical analyses of the species abundance data sets for each cruise revealed spatial patterns in the ichthyoplankton that suggest the occurrence of geographically distinct assemblages of fish larvae in each region. For all three sampling regions, the assemblage structure is primarily related to bathymetry, and Shelf, Slope, and Deep-Water assemblages are described. This shallow to deep-water gradient in species occurrence and abundance reflects the habitat preference and spawning location of the adult fish. Another degree of complexity is superimposed on this primary assemblage structure in each region and seems to be related to local topography and the prevailing current patterns. The patterns in ichthyoplankton assemblages of the three regions in the northeast Pacific Ocean described here form the basis for future investigations of spatial and temporal patterns in the ichthyoplankton of the subarctic Pacific.Regional Index Terms: Northeast Pacific Ocean, Southeast Bering Sea, Gulf of Alaska, U.S. West Coast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号