首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41435篇
  免费   1234篇
  国内免费   1095篇
测绘学   1050篇
大气科学   3247篇
地球物理   8526篇
地质学   15182篇
海洋学   3698篇
天文学   8933篇
综合类   251篇
自然地理   2877篇
  2022年   302篇
  2021年   513篇
  2020年   503篇
  2019年   555篇
  2018年   987篇
  2017年   945篇
  2016年   1133篇
  2015年   826篇
  2014年   1146篇
  2013年   2092篇
  2012年   1481篇
  2011年   1982篇
  2010年   1734篇
  2009年   2262篇
  2008年   1872篇
  2007年   1923篇
  2006年   1839篇
  2005年   1360篇
  2004年   1286篇
  2003年   1185篇
  2002年   1143篇
  2001年   930篇
  2000年   919篇
  1999年   760篇
  1998年   804篇
  1997年   741篇
  1996年   642篇
  1995年   617篇
  1994年   528篇
  1993年   472篇
  1992年   465篇
  1991年   444篇
  1990年   500篇
  1989年   417篇
  1988年   392篇
  1987年   502篇
  1986年   391篇
  1985年   483篇
  1984年   597篇
  1983年   503篇
  1982年   502篇
  1981年   468篇
  1980年   474篇
  1979年   406篇
  1978年   406篇
  1977年   386篇
  1976年   356篇
  1975年   329篇
  1974年   349篇
  1973年   372篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
This study documents variations in calcium and nitrate concentrations that suggest changes in recharge pathways in a karst spring. The nitrate concentrations increased at the end of the growing season, showing the importance of the soil zone in the recharge pathway. The increase occurred over just a few days, which may be indicative of a change in contribution of baseflow in different seasons from deep to shallow groundwater. The calcium concentrations decreased several days after storm events. A change in the carbonate equilibrium is hypothesized because chloride was not diluted during these events. The decrease in calcium could be due to outgassing and calcite precipitation in the recharge area when older, higher ionic strength matrix water mixes with stormwater in open conduits. The use of geochemical indicators to better understand recharge pathways benefited from long-term monitoring and periods of daily sampling.  相似文献   
973.
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   
974.
975.
Diamondiferous kimberlites occur in eastern Finland, in the areas of Kaavi–Kuopio and Kuhmo. Active diamond exploration has been ongoing in the country for over two decades, but the Karelian craton still remains under explored given its size and potential. In order to develop techniques that can be applied to diamond exploration in glaciated terrains, the Geological Survey of Finland (GTK) carried out a detailed heavy mineral and geochemical survey of Quaternary till in 2001–2003 around two of the known kimberlitic bodies in Finland, Pipe 7 in Kaavi and Dyke 16 in Kuhmo. The mineralogical and geochemical signatures of these two kimberlites were studied in the basal till deposited down-ice from the targets. The kimberlites were selected to represent two different types in terms of shape, size, age and petrology, as well as showing contrasting country rocks and Quaternary deposits. Till samples up to 60 kg in weight were taken by excavator and by drill rig. Kimberlitic indicator mineral grains (0.25–1.0 mm) were concentrated using a GTK modified 3″Knelson Concentrator. Fine fractions (< 0.063 mm) of selected samples were analyzed by XRF and ICP-MS. The indicator grains down-ice from Pipe 7 form a well-defined fan in the basal till that can be followed for at least 2 km with a maximum concentration at 1.2 km distance from the pipe. Another kimberlitic body discovered during the study 300 m down-ice from Pipe 7 demonstrates that there are in fact at least two superimposed indicator fans. The results do not rule out the possibility of even more undiscovered kimberlitic sources in the area. In contrast, the indicator dispersal trail from Dyke 16 is shorter (1 km) and less well-defined than that at Kaavi, mainly due to the lower indicator content in the kimberlite itself and subsequently in till, as well as a large population of background chromites in till. The latter population is likely having been derived from the Archean Näätäniemi serpentinite massif and the associated ultramafic metavolcanics of the Kuhmo greenstone belt, located ca. 30 km up-ice from the sampling area. The indicator maximum at Seitaperä dyke swarm occurs immediately down-ice from the kimberlite, after which the concentration drops rapidly. Results of this study contribute to the overall understanding of the Quaternary history of the Kaavi and Kuhmo areas, and more importantly, provide key information to diamond exploration in these particular regions and also elsewhere in glaciated terrains.  相似文献   
976.
The Arsenopyrite Residue Stockpile (ARS) in Snow Lake, Manitoba contains approximately 250,000 tons of cyanide treated, refractory arsenopyrite ore concentrate. The residue was deposited between 1950 and 1959 in an open waste rock impoundment, and remained exposed until 2000, when the pile was capped with layers of waste rock and clay. During the time when the ARS was exposed to the atmosphere, arsenopyrite, pyrrhotite, pyrite and chalcopyrite were oxidized producing scorodite, jarosite and two generations of amorphous Fe sulfo-arsenates (AISA). These secondary phases attenuated some of the As released to pore water during oxidation in the upper layers of the ARS. The imposition of the cap prevented further oxidation. The secondary As minerals are not stable in the reduced environment that currently dominates the pile. Therefore, As currently is being released into the groundwater. Water in an adjacent monitoring well has concentrations of >20 mg/L total As with relative predominance of As(III).  相似文献   
977.
The Neoproterozoic Katangan R.A.T. (“Roches Argilo-Talqueuses”) Subgroup is a sedimentary sequence composed of red massive to irregularly bedded terrigenous-dolomitic rocks occurring at the base of the Katangan succession in Congo. Red R.A.T. is rarely exposed in a continuous section because it was affected by a major layer-parallel décollement during the Lufilian thrusting. However, in a number of thrust sheets, Red R.A.T. is in conformable sedimentary contact with Grey R.A.T which forms the base of the Mines Subgroup. Apart from the colour difference reflecting distinct depositional redox conditions, lithological, petrographical and geochemical features of Red and Grey R.A.T. are similar. A continuous sedimentary transition between these two lithological units is shown by the occurrence of variegated to yellowish R.A.T. The D. Strat. “Dolomies Stratifiées” formation of the Mines Subgroup conformably overlies the Grey R.A.T. In addition, a transitional gradation between Grey R.A.T. and D. Strat. occurs in most Cu–Co mines in Katanga and is marked by interbedding of Grey R.A.T.-type and D. Strat.-type layers or by a progressive petrographic and lithologic transition from R.A.T. to D. Strat. Thus, there is an unquestionable sedimentary transition between Grey R.A.T. and D. Strat. and between Grey R.A.T. and Red R.A.T.The R.A.T. Subgroup stratigraphically underlies the Mines Subgroup and therefore R.A.T. cannot be comprised of syn-orogenic sediments deposited upon the Kundelungu (formerly “Upper Kundelungu”) Group as suggested by Wendorff (2000). As a consequence, the Grey R.A.T. Cu–Co mineralisation definitely is part of the Mines Subgroup Lower Orebody, and does not represent a distinct generation of stratiform Cu–Co sulphide mineralisation younger than the Roan orebodies.  相似文献   
978.
We seek to identify the depth to which water is extracted by the roots in the soil. Indeed, in an isotopic steady-state condition of leaf water, transpiration introduces into the atmosphere a vapour whose isotopic signature is identical to that of root water. In the isotopic models of atmospheric general circulation, it is classically allowed that the signature of transpiration belongs to the meteoric water line. This supposes that the water taken by the roots has escaped with the evaporation of the soil and comes thus from the deep layers of the soil. At the time of experimentation carried out on maize plants (Nemours, Seine-et-Marne, France), this extraction depth was inferred from the comparison between the signature of the water measured on the level of the first internode of the stems of the plants and the isotopic profile of water in the soil. When the flow of transpiration reaches a maximum value, the plant uptakes water resulting from precipitations and which preserves its non-evaporating character after having quickly infiltrated in the deep layers of the soil. This relates to only 55% of the flux transpired by the canopy, the remainder presenting an evaporating character more or less marked according to ambient conditions. This experiment invalidates the classical hypothesis used in isotopic models of general atmospheric circulation in temperate regions. In fact, only half the amount of water vapour transpired by the canopy during the day presents a signature similar to that of the rainwater sampled in deep soil layers. To cite this article: Z. Boujamlaoui et al., C. R. Geoscience 337 (2005).  相似文献   
979.
The withdrawal of the Aral Sea tributaries (Amu and Syr Daria) for cultures has led to significant falls of its level and an important increase in its salinity. During the Holocene, a succession of low and high water inputs occurred. Silty deposits correspond to the high levels and carbonates to the low levels. This study makes a distinction between the Syr Daria and the Amu Daria water inputs during low-level periods by using mineralogical and chemical compositions of the carbonates deposits. Waters from the Syr Daria are more sulphatic and have a low iron content in comparison with that of the Amu Daria. The Syr Daria was the major tributary around 7500, 4956 and 970 yr?BP, whereas around 6200 and 3610 yr?BP, inflow also from the Amu Daria is observed. To cite this article: L. Le Callonnec et al., C. R. Geoscience 337 (2005).  相似文献   
980.
Effect of suction on the mechanical behaviour of iron ore rock   总被引:1,自引:0,他引:1  
The effect of suction on the behaviour of iron ore has been studied from both physical and mechanical points of view. The porosity and the suction phenomena have been analysed using different experimental techniques. Uniaxial compressive tests on partially saturated samples have shown that the suction is responsible for strength and cohesion improvement. Considering the theory of partially saturated porous soils of Coussy and Dangla (Mécanique des sols non saturés (2002 edn). Hermès Science: 2002; 390), we have proposed a constitutive law for partially saturated iron ore. The real increase in the apparent cohesion due to the capillary attraction forces is overestimated if the yield function is written in terms of effective stresses. The effect of the capillary cohesion has been modelled with a function in the expression of the apparent cohesion of the yield function. The effect of suction on the mechanical behaviour has been represented in the effective stresses space and in the total stresses space like the Alonso model (Géotechnique 1990; 40 :405–430). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号