首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   484篇
  免费   27篇
  国内免费   12篇
测绘学   8篇
大气科学   54篇
地球物理   138篇
地质学   175篇
海洋学   85篇
天文学   33篇
综合类   4篇
自然地理   26篇
  2024年   3篇
  2023年   8篇
  2022年   8篇
  2021年   16篇
  2020年   23篇
  2019年   9篇
  2018年   29篇
  2017年   18篇
  2016年   16篇
  2015年   24篇
  2014年   14篇
  2013年   27篇
  2012年   26篇
  2011年   39篇
  2010年   23篇
  2009年   29篇
  2008年   29篇
  2007年   26篇
  2006年   17篇
  2005年   25篇
  2004年   15篇
  2003年   16篇
  2002年   12篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   7篇
  1994年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
排序方式: 共有523条查询结果,搜索用时 78 毫秒
71.
72.
73.
Drastic changes were detected in glacial systems of the Antarctic Peninsula in the last decades. The observed phenomena comprise the disintegration of ice shelves, acceleration and thinning of glaciers, and retreat of glacier fronts. However, due to the lack of consistent systematic observations in particular of the higher parts of the glacial systems, it is difficult to predict further responses of the Antarctic Peninsula glaciers to climatic change. The present paper analyses spatial and temporal variations of changes in the dry-snow line altitude on the Antarctic Peninsula as extracted from a time series (1992–2005) of ERS-1/2 SAR and Envisat ASAR data. Upward changes in dry-snow line altitude were observed in general, and are attributed to extreme high-temperature events impacting the central plateaus of the Antarctic Peninsula and the increasing duration of warming periods. A mean decrease in dry-snow line altitude was detected on the west side of the peninsula and is identified as a response to recorded increase in precipitation and accumulation. These results validate the capability of SAR data for deriving superficial parameters of glaciers to be used as indicators of climatic changes in high-latitude regions where operational restrictions limit conventional meteorological observations.  相似文献   
74.
Extreme rainfalls in SE South America   总被引:1,自引:0,他引:1  
Heavy rainfall trends in a region of south-eastern South America during 1959–2002 were discussed using daily data of 52 meteorological stations of Argentina, Brazil and Uruguay. Changes in intensity and frequency were both studied with different statistical tests and approaches to check the significance of trends of single and regional aggregated rainfall series. There were predominant positive trends in the annual maximum rainfalls, as well as a remarkable increment in the frequency of heavy rainfalls over thresholds ranging from 50 to 150 mm. However, significant positive trends were not shown in the series of annual maximums and shown only in 15% to 30% of the series of frequencies over thresholds. This lack of significance is due to the high variability of heavy rainfalls in space and time, which makes difficult their capture by single rain gauges. Thus, when the assessment of the heavy rainfall indicators of intensity and frequency were conducted at the regional and sub-regional level, it showed significant trends, both in intensity and frequency over thresholds, with a clearer signal in central and eastern Argentina between 30° and 40° S.  相似文献   
75.
Within the Variscan Orogen, Early Devonian and Late Devonian high‐P belts separated by mid‐Devonian ophiolites can be interpreted as having formed in a single subduction zone. Early Devonian convergence nucleated a Laurussia‐dipping subduction zone from an inherited lithospheric neck (peri‐Gondwanan Cambrian back‐arc). Slab‐retreat induced upper plate extension, mantle incursion and lower plate thermal softening, favouring slab‐detachment within the lower plate and diapiric exhumation of deep‐seated rocks through the overlying mantle up to relaminate the upper plate. Upper plate extension produced mid‐Devonian suprasubduction ocean floor spreading (Devonian ophiolites), while further convergence resulted in plate coupling and intraoceanic ophiolite imbrication. Accretion of the remaining Cambrian ocean heralded Late Devonian subduction of inner sections of Gondwana across the same subduction zone and the underthrusting of mainland Gondwana (culmination of NW Iberian allochthonous pile). Oblique convergence favoured lateral plate sliding, and explained the different lateral positions along Gondwana of terranes separated by Palaeozoic ophiolites.  相似文献   
76.
Páramos, a neotropical alpine grassland-peatland biome of the northern Andes and Central America, play an essential role in regional and global cycles of water, carbon, and nutrients. They act as water towers, delivering water and ecosystem services from the high mountains down to the Pacific, Caribbean, and Amazon regions. Páramos are also widely recognized as a biodiversity and climate change hot spots, yet they are threatened by anthropogenic activities and environmental changes. Despite their importance for water security and carbon storage, and their vulnerability to human activities, only three decades ago, páramos were severely understudied. Increasing awareness of the need for hydrological evidence to guide sustainable management of páramos prompted action for generating data and for filling long-standing knowledge gaps. This has led to a remarkably successful increase in scientific knowledge, induced by a strong interaction between the scientific, policy, and (local) management communities. A combination of well-established and innovative approaches has been applied to data collection, processing, and analysis. In this review, we provide a short overview of the historical development of research and state of knowledge of the hydrometeorology, flux dynamics, anthropogenic impacts, and the influence of extreme events in páramos. We then present emerging technologies for hydrology and water resources research and management applied to páramos. We discuss how converging science and policy efforts have leveraged traditional and new observational techniques to generate an evidence base that can support the sustainable management of páramos. We conclude that this co-evolution of science and policy was able to successfully cover different spatial and temporal scales. Lastly, we outline future research directions to showcase how sustainable long-term data collection can foster the responsible conservation of páramos water towers.  相似文献   
77.
Hydrogeochemical based mixing models have been successfully used to investigate the composition and source identification of streamflow. The applicability of these models is limited due to the high costs associated with data collection and the hydrogeochemical analysis of water samples. Fortunately, a variety of mixing models exist, requiting different amount of data as input, and in data scarce regions it is likely that preference will be given to models with the lowest requirement of input data. An unanswered question is if models with high or low input requirement are equally accurate. To this end, the performance of two mixing models with different input requirement, the mixing model analysis (MMA) and the end-member mixing analysis (EMMA), were verified on a tropical montane headwater catchment (21.7 km2) in the Ecuadorian Andes. Nineteen hydrogeochemical tracers were measured on water samples collected weekly during 3 years in streamflow and eight potential water sources or end-members (precipitation, lake water, soil water from different horizons and springs). Results based on 6 conservative tracers, revealed that EMMA (using all tracers) and MMA (using pair-combinations out of the 6 conservative ones), identified the same end-members: rainfall, soil water and spring water., as well as, similar contribution fractions to streamflow from rainfall 21.9% and 21.4%, soil water 52.7% and 52.3%, and spring water 26.1% and 28.7%, respectively. Our findings show that a hydrogeochemical mixing model requiring a few tracers can provide similar outcomes than models demanding more tracers as input data. This underlines the value of a preliminary detailed hydrogeochemical characterization as basis to derive the most cost-efficient monitoring strategy.  相似文献   
78.
79.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   
80.
Changes in ocean heat content(OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum.According to IAP/CAS data, ...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号