Groundwater contamination is a well-known phenomenon, which occurs on local and regional scales in Izeh polje. The aims of
this paper are investigation of the impact of human activities on the polje ecosystem, determination of the vulnerability
of ground water, and to solve environmental problems. Nitrate contamination of groundwater in the Izeh polje was predicted
using a solute transport model. The nitrate concentration in groundwater in most parts of Izeh polje is greater than maximum
concentration permissible for drinking water, i.e., 45 mg/l. The main source of nitrate in the eastern underground areas of
Izeh city is the domestic sewage. Bacterial pollution of shallow ground water in Izeh polje is severe and widespread. About
45% of ground water samples in May and September 2001 have positive MPN coliforms. Infiltration of polluted surface waters
and decrease of water table depth, have lead to bacterial pollution of 80% of ground water samples in January 2002. The northeast,
south and southwest areas of Izeh polje have higher pollution potential rather than its middle parts. The aquifer vulnerability
indices in the middle, eastern, and northern parts of the polje are moderately lower as a result of decreased sediment size
of the aquifer. The pollution in the polje depends on the amount and presence of pollutants. If they do exist, the possibility
of pollution is considerable due to the coarseness of materials and shallow depth of groundwater table. 相似文献
In many parts of Canada, limited data are available for hydrodynamic model inputs, and the ability to generate quality flood grids through 1D, 2D or 3D methods is nonviable. In this paper, the capability of simplified flood models, which rely solely on digital terrain models (DTMs), was explored to assess the quality and speed of their results. Results were validated against historic floods in two locations. Three non-physics-based simplified conceptual flood models were tested: (1) planar method, (2) inclined plane and (3) height above nearest drainage network (HAND) model. The accuracy and performance were evaluated using three criteria: inundation extent, water depth and computation time. Findings show that the HAND model is the best predictor of inundation extent, with Probability of Detection and Critical Success Index being higher than 0.90 in both study areas. Though the preprocessing time for the HAND model is lengthy, once completed, the time to simulate flooding at a variety of water levels is rapid, making this model the most suitable choice for web-based, on-demand flood inundation mapping. Knowledge of the fit of these flood models and associated uncertainty can be helpful to emergency managers such that they can better understand exposure and vulnerability while preparing flood response plans. 相似文献
With the advent of high spatial resolution satellite imagery, automatic and semiautomatic building extractions have turned into one of the outstanding research topics in the field of remote sensing and machine vision. To this date, various algorithms have been presented for extracting the buildings from satellite images. Such methods lend their bases to diverse criteria such as radiometric, geometric, edge detection, and shadow. In this paper, a novel object based approach has been proposed for automatic and robust detections as well as extraction of the building in high spatial resolution images. To fulfill this, we simultaneously made use of both stable and variable features. While the former can be derived from inherent characteristics of the buildings, the latter is extracted using a feature analysis tool. In addition, a novel perspective has been recommended to boost the automation degree of the segmentation part in the object based analysis of remote sensing imagery. The proposed method was applied to a QuickBird imagery of an urban area in Isfahan city and the results of the quantitative evaluation demonstrated that the proposed method could yield promising results. Moreover, in another section of this study, for assessing the algorithm transferability, the rule set was implemented to a part of the WorldView image of Yazd city, proving that the proposed approach is capable of transferability in different types of case studies. 相似文献
After the earthquake occurrence, collecting correct information about the extent of damage is essential for managing critical conditions and allocating limited resources. The prepared building damage maps sometimes bring about waste of time required for rescuing individuals under the rubble by wrongly conducting rescue teams toward regions with a lower rescue priority. In this research, an algorithm based on using a proposed standard at database level was developed to prioritize damaged buildings by considering five key elements of land use type, the degree of damage to buildings, the land use differentiation index, time of the highest population density in each land use, and time of disaster’s incidence. The steps of the proposed method which was implemented in the MATLAB environment include: detecting buildings on the pre- and post-event imagery, implementing texture features for each candidate building, choosing the optimal features by genetic algorithm, determining the degree of building damage in three classes of negligible damage, substantial damage, and heavy damage by using the difference between chosen features as inputs of the designed neurofuzzy inference system. Data collected from field observations were compared to the output obtained from the proposed algorithm. This comparison presented a general accuracy of 88% and Kappa coefficient of 79% in the classification of buildings into three damage classes. The proposed standard then was used for classifying damaged buildings into relief priorities of high, medium, and low. Findings revealed that the relief priority map could be a basis for correct guidance of relief and rescue teams during crucial times following earthquakes. 相似文献
A reconnaissance study has been made of the distribution of 238U, 232Th, 40K and 137Cs and geochemical features in soils and sediments samples at various locations in the northwestern coast of Persian Gulf. Activity concentration levels due to radionuclides were measured in 30 soil and sediment samples collected from this region. From the measured spectra, activity concentrations were determined for 40K (range from 146 to 500 Bq kg(-1)), 137Cs (from 5 to 20 Bq kg(-1)), 238U (from 21 to 65 Bq kg(-1)) and 232Th (from 15 to 45 Bq kg(-1)) with lowest limit detection (LLD) of 68, 3.2, 4.3 and 4.3 Bq kg(-1), respectively. The dose rate from ambient air at the soil ranges was between 19 and 58 nGy h(-1) with an average of 37.41+/-9.66 nGy h(-1). 相似文献
Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones. 相似文献
Natural Resources Research - The weighted mean and the multiple regression techniques are two methods that are employed to estimate elemental background concentration of lithologies upstream of... 相似文献
Due to anthropogenic influences and large amounts of pollutant released into the groundwater, it is vital to investigate groundwater quality and to characterize susceptible areas to contamination. In this paper, a new optimization-based methodology is proposed for determining groundwater risk using DRASTIC model based on genetic algorithm optimization model and Wilcoxon test. The correlation coefficient between DRASTIC/modified DRASTIC indices and nitrate concentrations in monitoring wells is used as a criteria for evaluating the efficiency of the proposed models. In this regard, because of the unsatisfactory original DRASTIC’s result, sensitivity analysis, genetic algorithm (GA), and Wilcoxon test (1945) are carried out to tackle the subjectivity associated with the original DRASTIC model and obtain better and reliable results. The results indicate that application of Wilcoxon test and GA optimization outperforms the others. Consequently, the correlation coefficient increased remarkably as compared to the original DRASTIC model (from 0.57 to 0.82). The proposed optimization process is adaptable to be applied in different case studies; mainly since it has the ability to optimize the weights of the model based on hydrogeological characteristics of the aquifer. Finally, the risk maps of the models are prepared using ArcGIS® to determine the most vulnerable areas. 相似文献
In this paper, an approach is presented to analyze the stability risk of rock slopes based on a new rating system. Three factors are used to estimate the risk level of rock slopes: (1) failure probability, (2) element at risk rating, and (3) vulnerability rating. Element at risk and vulnerability ratings are both given a range from 0 to 10, and the probability of failure is varied between 0 and 1, so the risk rating ranges between 0 and 100. This risk rating can be used to determine both the quantitative and qualitative risk levels of slopes at the same time. The method is tested on the western sector of the slopes facing Songun copper plant phase III, Iran, to clarify its procedures and assess its validity. Deterministic kinematic analyses showed that the slope has a potential for circular failure. Risk assessments revealed that the risk levels of the slope in both static and pseudo-static conditions are “very low” and “high,” respectively.
The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983–2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century. 相似文献