首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30471篇
  免费   425篇
  国内免费   326篇
测绘学   629篇
大气科学   1933篇
地球物理   5482篇
地质学   11650篇
海洋学   3055篇
天文学   7083篇
综合类   71篇
自然地理   1319篇
  2022年   299篇
  2021年   462篇
  2020年   518篇
  2019年   568篇
  2018年   1109篇
  2017年   1072篇
  2016年   1168篇
  2015年   563篇
  2014年   1062篇
  2013年   1745篇
  2012年   1171篇
  2011年   1461篇
  2010年   1306篇
  2009年   1607篇
  2008年   1369篇
  2007年   1425篇
  2006年   1340篇
  2005年   792篇
  2004年   748篇
  2003年   694篇
  2002年   732篇
  2001年   651篇
  2000年   597篇
  1999年   474篇
  1998年   509篇
  1997年   468篇
  1996年   410篇
  1995年   370篇
  1994年   397篇
  1993年   310篇
  1992年   309篇
  1991年   300篇
  1990年   338篇
  1989年   235篇
  1988年   240篇
  1987年   286篇
  1986年   232篇
  1985年   335篇
  1984年   291篇
  1983年   286篇
  1982年   301篇
  1981年   227篇
  1980年   269篇
  1979年   213篇
  1978年   224篇
  1977年   179篇
  1976年   181篇
  1975年   183篇
  1974年   179篇
  1973年   179篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
We present a new Near Earth Object (NEO) survey simulator which incorporates the four-dimensional population model of 4668 NEOs [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] and the observing strategies of most asteroid search programs. With the recent expansion of survey capabilities, previous simulators focused on a specific survey facility are no longer useful in predicting the future detection rates. Our simulation is a superposition of simplified search patterns adopted by all major wide-field surveys in operation in both hemispheres. We defined five different simulation periods to follow the evolution of survey efficiencies reflecting changes in either search volume as a result of upgrades of telescopes and instruments or in observing schedules. The simulator makes remarkably good reproductions of actual survey results as of December 2005, not only the total number of detections but also (a,e,i,H) (‘H’ means absolute magnitude of an asteroid) distributions. An extended experiment provides excellent predictions for discovery statistics of NEOs (H<18) reported to the Minor Planet Center in 2006. These support that our simulator is a plausible approximation of real surveys. We further confirm that, with the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] population model and present survey capability, the 90% completeness level of kilometer-sized NEOs will be achieved by 2010 or 2011. However, about 8% of the kilometer-sized or larger NEOs would remain undetected even after 10-year operation (2007-2016) of all current NEO survey facilities. They are apparently faint, with orbits characterized by large semimajor axis and higher eccentricity; these “hardest-to-find” objects tend to elude the search volume of existing NEO survey facilities. Our simulation suggests that 15% of undetectable objects are Atens and Inner Earth Objects. Because of their orbital characteristics, they will remain within ±45° from the Sun, thus cannot be discovered in the forthcoming decade if our effort is limited to current ground-based telescopes.  相似文献   
993.
Mid-infrared spectra measured by Cassini's Composite InfraRed Spectrometer (CIRS) between July 2004 and January 2007 (Ls=293°-328°) have been used to determine stratospheric temperature and abundances of C2H2, C3H4, C4H2, HCN, and HC3N. Over 65,000 nadir spectra with spectral resolutions of 0.5 and 2.5 cm−1 were used to probe spatial and temporal composition variations in Titan's stratosphere. Cassini's 180° orbital transfer in mid-2006 allowed low emission angle observations of the north polar region for the first time in the mission and allowed us to probe the full latitude range. We present the first measurements of composition variations within the polar vortex, which display increasing abundances right up to 90° N. The lack of a homogeneous abundance-latitude variation within the vortex indicates limited horizontal mixing and suggests that subsidence is greatest at the vortex core. Contrary to numerical model predictions and tropospheric cloud observations, we do not see any evidence for a secondary circulation cell near the south pole, which suggests a single Hadley-type circulation in the stratosphere at this epoch. This difference can be reconciled if the secondary cell is restricted to altitudes below 100 km, where there is no sensitivity in our data. Temporal variations in composition were observed in the south, with volatile species becoming less abundant as the season progressed. The observed variations are compared to numerical model predictions and observations from Voyager.  相似文献   
994.
The surface of Enceladus consists almost completely of water ice. As the band depths of water ice absorptions are sensitive to the size of particles, absorptions can be used to map variations of icy particles across the surface. The Visual and Infrared Mapping Spectrometer (VIMS) observed Enceladus with a high spatial resolution during three Cassini flybys in 2005 (orbits EN 003, EN 004 and EN 011). Based on these data we measured the band depths of water ice absorptions at 1.04, 1.25, 1.5, and 2 μm. These band depths were compared to water ice models that represent theoretically calculated reflectance spectra for a range of particle diameters between 2 μm and 1 mm. The agreement between the experimental (VIMS) and model values supports the assumption that pure water ice characterizes the surface of Enceladus and therefore that variations in band depth correspond to variations in water ice particle diameters. Our measurements show that the particle diameter of water ice increases toward younger tectonically altered surface units with the largest particles exposed in relatively “fresh” surface material. The smallest particles were generally found in old densely cratered terrains. The largest particles (∼0.2 mm) are concentrated in the so called “tiger stripes” at the south pole. In general, the particle diameters are strongly correlated with geologic features and surface ages, indicating a stratigraphic evolution of the surface that is caused by cryovolcanic resurfacing and impact gardening.  相似文献   
995.
The formation of organic compounds in the atmosphere of Titan is an ongoing process of the generation of complex organics from the simplest hydrocarbon, methane. Solar radiation and magnetosphere electrons are the main energy sources that drive the reactions in Titan's atmosphere. Since energy from solar radiation is 200 times greater than that from magnetosphere electrons, we have investigated the products formed by the action of UV radiation (185 and 254 nm) on a mixture of gases containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene, the basic gas mixture (BGM) that simulates aspects of Titan's atmosphere using a flow reactor [Tran, B.N., Ferris, J.P., Chera, J.J., 2003a. Icarus 162, 114-124; Tran, B.N., Joseph, J.C., Force, M., Briggs, R.G., Vuitton, V., Ferris, J.P., 2005. Icarus 177, 106-115]. The present research extends these studies by the addition of carbon monoxide and hydrogen cyanide to the BGM. Quantum yields for the loss of reactants and the formation of volatile products were determined and compared with those measured in the absence of the hydrogen cyanide and carbon monoxide. The GCMS analyses of the volatile photolysis products from the BGM, with added hydrogen cyanide, had a composition similar to that of the BGM while the photolysis products of the BGM with added carbon monoxide contained many oxygenated compounds. The infrared spectrum of the corresponding solid product revealed the absorption band of a ketone group, which was probably formed from the reaction of carbon monoxide with the free radicals generated by photolysis of acetylene and ethylene. Of particular interest was the observation that the addition of HCN to the gas mixture only resulted in a very small change in the C/N ratio and in the intensity of the CN frequency at 2210 cm−1 in the infrared spectrum suggesting that little HCN is incorporated into the haze analog. The C/N ratio of the haze analogs was found to be in the 10-12 range. The UV spectra of the solid products formed when HCN or CO added to the BGM is similar to the UV absorption formed from the BGM alone. This result is consistent with absence of additional UV chromophores to the solid product when these mixtures are photolyzed. The following photoproducts, which were not starting materials in our photochemical studies, have been observed on Titan: acetonitrile, benzene, diacetylene, ethane, propene, propane, and propyne.  相似文献   
996.
The dynamics of Titan's stratosphere is discussed in this study, based on a comparison between observations by the CIRS instrument on board the Cassini spacecraft, and results of the 2-dimensional circulation model developed at the Institute Pierre-Simon Laplace, available at http://www.lmd.jussieu.fr/titanDbase [Rannou, P., Lebonnois, S., Hourdin, F., Luz, D., 2005. Adv. Space Res. 36, 2194-2198]. The comparison aims at both evaluating the model's capabilities and interpreting the observations concerning: (1) dynamical and thermal structure using temperature retrievals from Cassini/CIRS and the vertical profile of zonal wind at the Huygens landing site obtained by Huygens/DWE; and (2) vertical and latitudinal profiles of stratospheric gases deduced from Cassini/CIRS data. The modeled thermal structure is similar to that inferred from observations (Cassini/CIRS and Earth-based observations). However, the upper stratosphere (above 0.05 mbar) is systematically too hot in the 2D-CM, and therefore the stratopause region is not well represented. This bias may be related to the haze structure and to misrepresented radiative effects in this region, such as the cooling effect of hydrogen cyanide (HCN). The 2D-CM produces a strong atmospheric superrotation, with zonal winds reaching 200 m s−1 at high winter latitudes between 200 and 300 km altitude (0.1-1 mbar). The modeled zonal winds are in good agreement with retrieved wind fields from occultation observations, Cassini/CIRS and Huygens/DWE. Changes to the thermal structure are coupled to changes in the meridional circulation and polar vortex extension, and therefore affect chemical distributions, especially in winter polar regions. When a higher altitude haze production source is used, the resulting modeled meridional circulation is weaker and the vertical and horizontal mixing due to the polar vortex is less extended in latitude. There is an overall good agreement between modeled chemical distributions and observations in equatorial regions. The difference in observed vertical gradients of C2H2 and HCN may be an indicator of the relative strength of circulation and chemical loss of HCN. The negative vertical gradient of ethylene in the low stratosphere at 15° S, cannot be modeled with simple 1-dimensional models, where a strong photochemical sink in the middle stratosphere would be necessary. It is explained here by dynamical advection from the winter pole towards the equator in the low stratosphere and by the fact that ethylene does not condense. Near the winter pole (80° N), some compounds (C4H2, C3H4) exhibit an (interior) minimum in the observed abundance vertical profiles, whereas 2D-CM profiles are well mixed all along the atmospheric column. This minimum can be a diagnostic of the strength of the meridional circulation, and of the spatial extension of the winter polar vortex where strong descending motions are present. In the summer hemisphere, observed stratospheric abundances are uniform in latitude, whereas the model maintains a residual enrichment over the summer pole from the spring cell due to a secondary meridional overturning between 1 and 50 mbar, at latitudes south of 40-50° S. The strength, as well as spatial and temporal extensions of this structure are a difficulty, that may be linked to possible misrepresentation of horizontally mixing processes, due to the restricted 2-dimensional nature of the model. This restriction should also be kept in mind as a possible source of other discrepancies.  相似文献   
997.
The spin rate distribution of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km is uniform in the range from f=1 to 9.5 d−1, and there is an excess of slow rotators with f<1 d−1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of ≈0.022 d−1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d−1 is ≈45 Myr), thus the residence time of slowed down asteroids in the excess is ≈110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km (∼5 times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f=9-10 d−1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids.  相似文献   
998.
Using ion-electron fluid parameters derived from Cassini Plasma Spectrometer (CAPS) observations within Saturn's inner magnetosphere as presented in Sittler et al. [2006a. Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results. Planet. Space Sci., 54, 1197-1210], one can estimate the ion total flux tube content, NIONL2, for protons, H+, and water group ions, W+, as a function of radial distance or dipole L shell. In Sittler et al. [2005. Preliminary results on Saturn's inner plasmasphere as observed by Cassini: comparison with Voyager. Geophys. Res. Lett. 32(14), L14S04), it was shown that protons and water group ions dominated the plasmasphere composition. Using the ion-electron fluid parameters as boundary condition for each L shell traversed by the Cassini spacecraft, we self-consistently solve for the ambipolar electric field and the ion distribution along each of those field lines. Temperature anisotropies from Voyager plasma observations are used with (T/T)W+∼5 and (T/T)H+∼2. The radio and plasma wave science (RPWS) electron density observations from previous publications are used to indirectly confirm usage of the above temperature anisotropies for water group ions and protons. In the case of electrons we assume they are isotropic due to their short scattering time scales. When the above is done, our calculation show NIONL2 for H+ and W+ peaking near Dione's L shell with values similar to that found from Voyager plasma observations. We are able to show that water molecules are the dominant source of ions within Saturn's inner magnetosphere. We estimate the ion production rate SION∼1027 ions/s as function of dipole L using NH+, NW+ and the time scale for ion loss due to radial transport τD and ion-electron recombination τREC. The ion production shows localized peaks near the L shells of Tethys, Dione and Rhea, but not Enceladus. We then estimate the neutral production rate, SW, from our ion production rate, SION, and the time scale for loss of neutrals by ionization, τION, and charge exchange, τCH. The estimated source rate for water molecules shows a pronounced peak near Enceladus’ L shell L∼4, with a value SW∼2×1028 mol/s.  相似文献   
999.
Plasma and magnetic field measurements made onboard the Venus Express on June 1, 2006, are analyzed and compared with predictions of a global model. It is shown that in the orbit studied, the plasma and magnetic field observations obtained near the North Pole under solar minimum conditions were qualitatively and, in many cases also, quantitatively in agreement with the general picture obtained using a global numerical quasi-neutral hybrid model of the solar wind interaction (HYB-Venus). In instances where the orbit of Venus Express crossed a boundary referred to as the magnetic pileup boundary (MPB), field line tracing supports the suggestion that the MPB separates the region that is magnetically connected to the fluctuating magnetosheath field from a region that is magnetically connected to the induced magnetotail lobes.  相似文献   
1000.
A cosmic dust detector for use onboard a satellite is currently being constructed from piezoelectric lead zirconate titanate (PZT). The characteristics of the PZT detector were studied by bombarding it with hypervelocity iron particles, which were supplied by a Van de Graaff accelerator. There was a linear relationship between the rise time of the signal observed from the detector and the particle's velocity, which was above 10 km/s on impact. It was also found that the rise time was almost independent of the collisional angle between the particles and the PZT surface within the limits of the particle's parameters used in this experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号