全文获取类型
收费全文 | 100篇 |
免费 | 3篇 |
国内免费 | 2篇 |
专业分类
测绘学 | 6篇 |
大气科学 | 6篇 |
地球物理 | 38篇 |
地质学 | 36篇 |
海洋学 | 8篇 |
天文学 | 5篇 |
自然地理 | 6篇 |
出版年
2023年 | 1篇 |
2021年 | 1篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 7篇 |
2016年 | 3篇 |
2015年 | 3篇 |
2014年 | 6篇 |
2013年 | 6篇 |
2012年 | 3篇 |
2011年 | 7篇 |
2010年 | 4篇 |
2009年 | 3篇 |
2008年 | 13篇 |
2007年 | 10篇 |
2006年 | 6篇 |
2005年 | 4篇 |
2004年 | 1篇 |
2003年 | 4篇 |
2002年 | 1篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1983年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有105条查询结果,搜索用时 15 毫秒
61.
Comparative study of methods for WHPA delineation 总被引:3,自引:0,他引:3
Paradis D Martel R Karanta G Lefebvre R Michaud Y Therrien R Nastev M 《Ground water》2007,45(2):158-167
Human activities, whether agricultural, industrial, commercial, or domestic, can contribute to ground water quality deterioration. In order to protect the ground water exploited by a production well, it is essential to develop a good knowledge of the flow system and to adequately delineate the area surrounding the well within which potential contamination sources should be managed. Many methods have been developed to delineate such a wellhead protection area (WHPA). The integration of more information on the geologic and hydrogeologic characteristics of the study area increases the precision of any given WHPA delineation method. From a practical point of view, the WHPA delineation methods allowing the simplest and least expensive integration of the available information should be favored. This paper presents a comparative study in which nine different WHPA delineation methods were applied to a well and a spring in an unconfined granular aquifer and to a well in a confined highly fractured rock aquifer. These methods range from simple approaches to complex computer models. Hydrogeological mapping and numerical modeling with MODFLOW-MODPATH were used as reference methods to respectively compare the delineation of the zone of contribution and the zone of travel obtained from the various WHPA methods. Although applied to simple ground water flow systems, these methods provided a relatively wide range of results. To allow a realistic delineation of the WHPA in aquifers of variable geometry, a WHPA delineation method should ensure a water balance and include observed or calculated regional flow characteristics. 相似文献
62.
The design of ground-coupled heat pump systems requires knowledge of the thermal properties of the subsurface and boreholes. These properties can be measured with in situ thermal response tests (TRT), where a heat transfer fluid flowing in a ground heat exchanger is heated with an electric element and the resulting temperature perturbation is monitored. These tests are analogous to standard pumping tests conducted in hydrogeology, because a system that is initially assumed at equilibrium is perturbed and the response is monitored in time, to assess the system's properties with inverse modeling. Although pumping test analysis is a mature topic in hydrogeology, the current analysis of temperature measurements in the context of TRTs is comparatively a new topic and it could benefit from the application of concepts related to pumping tests. The purpose of this work is to review the methodology of TRTs and improve their analysis using pumping test concepts, such as the well function, the superposition principle, and the radius of influence. The improvements are demonstrated with three TRTs. The first test was conducted in unsaturated waste rock at an active mine and the other two tests aimed at evaluating the performance of thermally enhanced pipe installed in a fully saturated sedimentary rock formation. The concepts borrowed from pumping tests allowed the planning of the duration of the TRTs and the analysis of variable heat injection rate tests accounting for external heat transfer and temperature recovery, which reduces the uncertainty in the estimation of thermal properties. 相似文献
63.
Improving the accuracy of NMO corrections and of the corresponding interval velocities entails implementing a better approximation than the formula used since the beginning of seismic processing. The exact equations are not practical as they include many unknowns. The approximate expression has only two unknowns, the reflection time and the rms velocity, but becomes inaccurate for large apertures of the recording system and heterogeneous vertical velocities. Several methods of improving the accuracy have been considered, but the gains do not compensate for the dramatic increase in computing time. Two alternative equations are proposed: the first containing two parameters, the reflection time and the focusing time, is not valid for apertures much greater than is the standard formula, but has a much faster computing time and does not stretch the far traces; the other, containing three parameters, the reflection time, like focusing time and the tuning velocity, retains high frequencies for apertures about twice those allowed by the standard equation. Its computing time can be kept within the same limits. NMO equations, old and new, are designed strictly for horizontal layering, but remain reliable as long as the rays travel through the same layers in both the down and up directions. An equation, similar to Dix's formula, is given to compute the interval velocities. The entire scheme can be automated to produce interval-velocity sections without manual picking. 相似文献
64.
Modelling the fine-structure of the geoid: Methods,data requirements and some results 总被引:2,自引:0,他引:2
Rene Forsberg 《Surveys in Geophysics》1993,14(4-5):403-418
The requirements for precise geoid models on local and regional scales have increased in recent years, primarily due to the ongoing developments in height determination by GPS on land, but also due to oceanographic requirements in using satellite altimetry for recovering dynamic sea-surface topography. Suitable methods for geoid computations from gravity data include Stokes integration, FFT methods, and least-squares collocation. Especially the FFT methods are efficient in handling large amounts of gravity data, and new variants of the methods taking earth curvature rigorously into account provide attractive methods for obtaining continental-scale, high-resolution geoid models. The accuracy of such models may be from 2–5 cm locally, to 50–100 cm on regional scales, depending on gravity data coverage, long wave-length gravity field errors, and datum problems. When approaching the cm-level geoid basic geoid definition questions (geoid or quasigeoid?) become very significant, especially in rugged areas. In the paper the geoid modelling methods and problems are reviewed, and some investigations on local data requirements for cm-level geoid prediction are presented. Some actual results are presented from Scandinavia, where a recent regional high-resolution geoid model yields apparent accuracies of 2–10 cm over GPS baselines of 50 to 2000 km. 相似文献
65.
This paper outlines evidence from Pakefield (northern Suffolk), eastern England, for sea‐level changes, river activity, soil development and glaciation during the late Early and early Middle Pleistocene (MIS 20–12) within the western margins of the southern North Sea Basin. During this time period, the area consisted of a low‐lying coastal plain and a shallow offshore shelf. The area was drained by major river systems including the Thames and Bytham. Changes in sea‐level caused several major transgressive–regressive cycles across this low‐relief region, and these changes are identified by the stratigraphic relationship between shallow marine (Wroxham Crag Formation), fluvial (Cromer Forest‐bed and Bytham formations) and glacial (Happisburgh and Lowestoft formations) sediments. Two separate glaciations are recognised—the Happisburgh (MIS 16) and Anglian (MIS 12) glaciations, and these are separated by a high sea level represented by a new member of the Wroxham Crag Formation, and several phases of river aggradation and incision. The principal driving mechanism behind sea‐level changes and river terrace development within the region during this time period is solar insolation operating over 100‐kyr eccentricity cycles. This effect is achieved by the impact of cold climate processes upon coastal, river and glacial systems and these climatically forced processes obscure the neotectonic drivers that operated over this period of time. © British Geological Survey/Natural Environment Research Council copyright 2005. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd. 相似文献
66.
67.
Ralf Srama Thomas Stephan Eberhard Grün Norbert Pailer Anton Kearsley Amara Graps Rene Laufer Pascale Ehrenfreund Nicolas Altobelli Kathrin Altwegg Siegfried Auer Jack Baggaley Mark J. Burchell James Carpenter Luigi Colangeli Francesca Esposito Simon F. Green Hartmut Henkel Mihaly Horanyi Annette Jäckel Sascha Kempf Neil McBride Georg Moragas-Klostermeyer Harald Krüger Pasquale Palumbo Andre Srowig Mario Trieloff Peter Tsou Zoltan Sternovsky Oliver Zeile Hans-Peter Röser 《Experimental Astronomy》2009,23(1):303-328
The scientific community has expressed strong interest to re-fly Stardust-like missions with improved instrumentation. We
propose a new mission concept, SARIM, that collects interstellar and interplanetary dust particles and returns them to Earth.
SARIM is optimised for the collection and discrimination of interstellar dust grains. Improved active dust collectors on-board
allow us to perform in-situ determination of individual dust impacts and their impact location. This will provide important
constraints for subsequent laboratory analysis.
The SARIM spacecraft will be placed at the L2 libration point of the Sun–Earth system, outside the Earth’s debris belts and
inside the solar-wind charging environment. SARIM is three-axes stabilised and collects interstellar grains between July and
October when the relative encounter speeds with interstellar dust grains are lowest (4 to 20 km/s). During a 3-year dust collection
period several hundred interstellar and several thousand interplanetary grains will be collected by a total sensitive area
of 1 m2. At the end of the collection phase seven collector modules are stored and sealed in a MIRKA-type sample return capsule.
SARIM will return the capsule containing the stardust to Earth to allow for an extraction and investigation of interstellar
samples by latest laboratory technologies. 相似文献
68.
Graciano P. Yumul Jr Carla B. Dimalanta Rodolfo A. Tamayo Jr Rene C. Maury 《Island Arc》2003,12(2):77-91
Abstract The Philippines preserves evidence of the superimposition of tectonic processes in ancient and present‐day collision and subduction zone complexes. The Baguio District in northern Luzon, the Palawan–Central Philippine region and the Mati–Pujada area in southeastern Mindanao resulted from events related to subduction polarity reversal leading to trench initiation, continent‐arc collision and autochthonous oceanic lithosphere emplacement, respectively. Geological data on the Baguio District in Northern Luzon reveal an Early Miocene trench initiation for the east‐dipping Manila Trench. This followed the Late Oligocene cessation of subduction along the west‐dipping proto‐East Luzon Trough. The Manila Trench initiation, which is modeled as a consequence of the counter‐clockwise rotation of Luzon, is attributed to the collision of the Palawan microcontinental block with the Philippine Mobile Belt. In the course of rotation, Luzon onramped the South China Sea crust, effectively converting the shear zone that bounded them into a subduction zone. Several collision‐related accretionary complexes (e.g. Romblon, Mindoro) are present in the Palawan–Central Philippine region. The easternmost collision zone boundary is located east of the Romblon group of islands. The Early Miocene southwestward shift of the collision boundary from Romblon to Mindoro started to end by the Pliocene. Continuous interaction between the Palawan microcontinental block and the Philippine Mobile Belt is presently taken up again along the collisional boundary east of the Romblon group of islands. The Mati–Pujada Peninsula area, on the other hand, is underlain by the Upper Cretaceous Pujada Ophiolite. This supra‐subduction zone ophiolite is capped by chert and pelagic limestones which suggests its derivation from a relatively deep marginal basin. The Pujada Ophiolite could be a part of a proto‐Molucca Sea plate. The re‐interpretation of the geology and tectonic settings of the three areas reaffirm the complex geodynamic evolution of the Philippine archipelago and addresses some of its perceived geological enigmas. 相似文献
69.
Assessment of long-range kinematic GPS positioning errors by comparison with airborne laser altimetry and satellite altimetry 总被引:3,自引:0,他引:3
Long-range airborne laser altimetry and laser scanning (LIDAR) or airborne gravity surveys in, for example, polar or oceanic
areas require airborne kinematic GPS baselines of many hundreds of kilometers in length. In such instances, with the complications
of ionospheric biases, it can be a real challenge for traditional differential kinematic GPS software to obtain reasonable
solutions. In this paper, we will describe attempts to validate an implementation of the precise point positioning (PPP) technique
on an aircraft without the use of a local GPS reference station. We will compare PPP solutions with other conventional GPS
solutions, as well as with independent data by comparison of airborne laser data with “ground truth” heights. The comparisons
involve two flights: A July 5, 2003, airborne laser flight line across the North Atlantic from Iceland to Scotland, and a
May 24, 2004, flight in an area of the Arctic Ocean north of Greenland, near-coincident in time and space with the ICESat
satellite laser altimeter. Both of these flights were more than 800 km long. Comparisons between different GPS methods and
four different software packages do not suggest a clear preference for any one, with the heights generally showing decimeter-level
agreement. For the comparison with the independent ICESat- and LIDAR-derived “ground truth” of ocean or sea-ice heights, the
statistics of comparison show a typical fit of around 10 cm RMS in the North Atlantic, and 30 cm in the sea-ice region north
of Greenland. Part of the latter 30 cm error is likely due to errors in the airborne LIDAR measurement and calibration, as
well as errors in the “ground truth” ocean surfaces due to drifting sea-ice. Nevertheless, the potential of the PPP method
for generating 10 cm level kinematic height positioning over long baselines is illustrated. 相似文献
70.
Rene Westerholt Bernd Resch Franz-Benjamin Mocnik Dirk Hoffmeister 《International journal of geographical information science》2018,32(3):571-600
Spatial variance is an important characteristic of spatial random variables. It describes local deviations from average global conditions and is thus a proxy for spatial heterogeneity. Investigating instability in spatial variance is a useful way of detecting spatial boundaries, analysing the internal structure of spatial clusters and revealing simultaneously acting geographic phenomena. Recently, a corresponding test statistic called ‘Local Spatial Heteroscedasticity’ (LOSH) has been proposed. This test allows locally heterogeneous regions to be mapped and investigated by comparing them with the global average mean deviation in a data set. While this test is useful in stationary conditions, its value is limited in a global heterogeneous state. There is a risk that local structures might be overlooked and wrong inferences drawn. In this paper, we introduce a test that takes account of global spatial heterogeneity in assessing local spatial effects. The proposed measure, which we call ‘Local Spatial Dispersion’ (LSD), adapts LOSH to local conditions by omitting global information beyond the range of the local neighbourhood and by keeping the related inferential procedure at a local level. Thereby, the local neighbourhoods might be small and cause small-sample issues. In the view of this, we recommend an empirical Bayesian technique to increase the data that is available for resampling by employing empirical prior knowledge. The usefulness of this approach is demonstrated by applying it to a Light Detection and Ranging-derived data set with height differences and by making a comparison with LOSH. Our results show that LSD is uncorrelated with non-spatial variance as well as local spatial autocorrelation. It thus discloses patterns that would be missed by LOSH or indicators of spatial autocorrelation. Furthermore, the empirical outcomes suggest that interpreting LOSH and LSD together is of greater value than interpreting each of the measures individually. In the given example, local interactions can be statistically detected between variance and spatial patterns in the presence of global structuring, and thus reveal details that might otherwise be overlooked. 相似文献