首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   5篇
  国内免费   2篇
测绘学   8篇
大气科学   10篇
地球物理   40篇
地质学   44篇
海洋学   36篇
天文学   10篇
自然地理   13篇
  2019年   6篇
  2018年   3篇
  2017年   8篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   14篇
  2012年   11篇
  2010年   5篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   7篇
  1995年   1篇
  1993年   2篇
  1992年   6篇
  1990年   2篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
  1962年   1篇
  1959年   2篇
  1958年   1篇
  1956年   1篇
  1954年   1篇
  1953年   1篇
排序方式: 共有161条查询结果,搜索用时 31 毫秒
91.
92.
93.
We present the first quantitative reconstruction of palaeofloods using lake sediments for the UK and show that for a large catchment in NW England the cluster of devastating floods from 1990 to present is without precedent in this 558-year palaeo-record. Our approach augments conventional flood magnitude and frequency (FMF) analyses with continuous lake sedimentary data to provide a longer-term perspective on flood magnitude recurrence probabilities. The 2009 flood, the largest in >558 years, had a recurrence interval larger (1:2,200 year) than revealed by conventional flood estimation using shorter duration gauged single station records (1:1,700 year). Flood-rich periods are non-stationary in their correlation with climate indices, but the 1990-2018 cluster is associated with warmer Northern Hemisphere Temperatures and positive Atlantic Multidecadal Oscillation. Monitored records rarely capture the largest floods and our palaeoflood series shows, for this catchment, such omissions undermine evaluations of future risk. Our approach provides an exemplar of how to derive centennial palaeoflood reconstructions from lakes coupled well with their catchments around the world. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
94.
Hudson Bay is a large, estuarine, shelf-like sea at the southern margin of the Arctic, where changes in seasonal ice cover and river discharge appear already to be underway. Here we present lignin data for dated sediments from eleven box cores and evaluate sources of terrigenous carbon, transport pathways, and whether terrigenous organic matter has been influenced by recent environmental change. Lignin yields (0.04 to 1.46 mg/100 mg organic carbon) decreased from the margin to the interior and from south to north, broadly reflecting the distribution of river inputs. Lignin compositional patterns indicated distinct regional sources with boreal forest (woody gymnosperm) vegetation an important source in the south, vs. tundra (non-woody angiosperm) in the north. Lignin patterns suggest redistribution of a fine-grained, mineral-associated fraction of the southern-derived terrigenous carbon to the northeast part of the Bay and ultimately into west Hudson Strait with the Bay's cyclonic coastal circulation. A small component of the carbon makes it to the central basins of Hudson Bay but most of the terrigenous organic material in that area appears to derive from resuspension of older, isostatically-rebounding coastal and inner shelf deposits. Most modern plant debris appears to be retained near river mouths due to hydrodynamic sorting, with the exception of the southwest inner shelf, where these materials extend > 30 km from shore. Temporal changes in the composition of terrigenous organic carbon recorded in most of the southern Hudson Bay cores perhaps reflect increases in erosion and cross-shelf transport from coastal deposits, possibly mediated by change in ice climate. In contrast, temporal changes in the northwest may relate to changes in the supply of modern plant debris under recent warmer conditions. On the western shelf, changes may relate to ice climate and the distribution of northern coastal water and/or changes in the delivery of materials by the Churchill River due to water diversion. Although the cores show evidence of change related to the ice climate, there is little evidence that ice itself transports terrigenous organic carbon within the system.  相似文献   
95.
Sublimation is a critical component of the snow cover mass balance. Although sublimation can be directly measured using eddy covariance (EC), such measurements are relatively uncommon in complex mountainous environments. The EC measurements of surface snowpack sublimation from three consecutive winter seasons (2004, 2005 and 2006) at a wind‐exposed and wind‐sheltered site were analysed to characterise sublimation in mountainous terrain. During the 2006 snow season, snow surface and near‐surface air temperature, humidity and wind were also measured, permitting the calculation of sublimation rates and a comparison with EC measurements. This comparison showed that measured and simulated sublimation was very similar at the exposed site but less so at the sheltered site. Wind speeds at the exposed site were nearly four times than that at the sheltered site, and the exposed site yielded measured sublimation that was two times the magnitude of that at the sheltered site. The time variation of measured sublimation showed diurnal increases in the early afternoon and increased rates overall as the snow season progressed. Measured mean daily sublimation rates were 0.39 and 0.15 mm day?1 at the exposed and sheltered sites, respectively. At the exposed site, measured sublimation accounted for 16% and 41% of the maximum snow accumulation in 2006 and 2005, respectively. At the sheltered site, measured seasonal sublimation was approximately 4% in 2004 and 2006 and 8% in 2005 of the maximum snow water equivalent. Simulated sublimation was only available for 2006 and suggested smaller but comparable percentages to the sublimation estimated from observations. At the exposed site, a total of 42 mm sublimated for the snow season, which constituted 12% of the maximum accumulation. At the sheltered site, 17 mm (2.2% of maximum accumulation) was sublimated over the snow season. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
96.
We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r2 = 0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production “saturated”. The δ15N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast.  相似文献   
97.
The characteristics of chromophoric dissolved organic matter (CDOM) were studied in Hudson Bay and Hudson Strait in the Canadian Arctic. Hudson Bay receives a disproportionately large influx of river runoff. With high dissolved organic matter (DOM) concentrations in Arctic rivers the influence of CDOM on coastal and ocean systems can be significant, yet the distribution, characteristics and potential consequences of CDOM in these waters remain unknown. We collected 470 discrete water samples in offshore, coastal, estuarine and river waters in the region during September and October 2005. Mixing of CDOM appeared conservative with salinity, although regional differences exist due to variable DOM composition in the rivers discharging to the Bay and the presence of sea-ice melt, which has low CDOM concentrations and low salinity. There were higher concentrations of CDOM in Hudson Bay, especially in coastal waters with salinities <28<28, due to river runoff. Using CDOM composition of water masses as a tracer for the freshwater components revealed that river runoff is largely constrained to nearshore waters in Hudson Bay, while sea-ice melt is distributed more evenly in the Bay. Strong inshore–offshore gradients in the bio-optical properties of the surface waters in the Hudson Bay cause large variation in penetration of ultraviolet radiation and the photic depth within the bay, potentially controlling the vertical distribution of biomass and occurrence of deep chlorophyll maxima which are prevalent only in the more transparent offshore waters of the bay. The CDOM distribution and associated photoprocesses may influence the thermodynamics and stratification of the coastal waters, through trapping of radiant heating within the top few meters of the water column. Photoproduction of biologically labile substrates from CDOM could potentially stimulate the growth of biomass in Hudson Bay coastal waters. Further studies are needed to investigate the importance of terrestrial DOM in the Hudson Bay region, and the impact of hydroelectric development and climate change on these processes.  相似文献   
98.
The combination of tree canopy cover and a free water surface makes the subcanopy environment of flooded forested wetlands unlike other aquatic or terrestrial systems. Subcanopy vapour fluxes and energy budgets represent key controls on water level and understorey climate but are not well understood. In a permanently flooded forest in south‐eastern Louisiana, USA, an energy balance approach was used to address (a) whether evaporation from floodwater under a forest canopy is solely energy limited and (b) how energy availability was modulated by radiation and changes in floodwater heat storage. A 5‐month continuous measurement period (June–November) was used to sample across seasonal changes in canopy activity and temperature regimes. Over this period, the subcanopy airspace was humid, maintaining saturation vapour pressure for 28% of the total record. High humidity coupled with the thermal inertia of surface water altered both seasonal and diel energy exchanges, including atypical phenomena such as frequent day‐time vapour pressure gradients towards the water surface. Throughout the study period, nearly all available energy was partitioned to evaporation, with minimal sensible heat exchange. Monthly mean evaporation ranged from 0.7 to 1.7 mm/day, peaking in fall when canopy senescence allowed greater radiation transmission; contemporaneous seasonal temperature shifts and a net release of stored heat from the surface water resulted in energy availability exceeding net radiation by 30% in October and November. Relatively stable energy partitioning matches Priestley–Taylor assumptions for a general model of evaporation in this ecosystem.  相似文献   
99.
100.
We present the first sedimentary biomarker study encompassing the entire Arctic Ocean. A large data set of organic markers for terrigenous, petroleum and combustion inputs [alkanes, hopanes and steranes, parent and alkyl polycyclic aromatic hydrocarbons (PAHs)] is examined for patterns in space and time using principal components analysis (PCA) and partial least squares (PLS). Biomarker patterns reveal the central Arctic Ocean basin sediments to be compositionally distinct from those of the Mackenzie River/Beaufort Sea and Barents Sea, but similar to those of the Laptev Sea. PAH distributions reflected in PAH ratios and PCA projections demonstrate that Arctic Ocean sediment is dominated by natural inputs to the extent that anthropogenic combustion PAHs are not significant. We find only modest changes between the glacial and post-glacial sediments for atmospherically transported hydrocarbon biomarkers, while particle associated biomarkers were captured strongly at basin edges during the glacial period, and much more evenly transported across basins during the post-glacial period. The orders of magnitude decreases in particle associated petrogenic alkanes and PAHs in central basins during glacial times, coupled with the uniformity of most petrogenic biomarker parameters for most basin and shelf locations, reflect a massive reduction in ice transport that makes the margins the most likely source of petrogenic material for the Pleistocene/Holocene central Arctic basins. The proximity of large coal deposits of various maturity levels along the Lena River, the overlap in PAH and biomarker composition of the Laptev Sea and surficial sediments from the central Arctic Ocean and the location of the Laptev Sea at the origin of the main Transpolar Drift all point to eroded coals from the Lena River/Laptev Sea as the likely source of petrogenic hydrocarbons to the central Arctic Ocean. The ubiquitous presence of allochthonous coal in Arctic Ocean surface sediments provides a major constraint on the use of petrogenic biomarkers to infer the presence of subsurface petroleum reserves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号