全文获取类型
收费全文 | 448篇 |
免费 | 17篇 |
国内免费 | 7篇 |
专业分类
测绘学 | 7篇 |
大气科学 | 43篇 |
地球物理 | 91篇 |
地质学 | 174篇 |
海洋学 | 22篇 |
天文学 | 97篇 |
自然地理 | 38篇 |
出版年
2022年 | 4篇 |
2021年 | 4篇 |
2020年 | 5篇 |
2019年 | 4篇 |
2018年 | 16篇 |
2017年 | 12篇 |
2016年 | 7篇 |
2015年 | 11篇 |
2014年 | 11篇 |
2013年 | 36篇 |
2012年 | 13篇 |
2011年 | 21篇 |
2010年 | 11篇 |
2009年 | 19篇 |
2008年 | 21篇 |
2007年 | 13篇 |
2006年 | 12篇 |
2005年 | 14篇 |
2004年 | 16篇 |
2003年 | 14篇 |
2002年 | 11篇 |
2001年 | 10篇 |
2000年 | 6篇 |
1999年 | 8篇 |
1998年 | 4篇 |
1997年 | 7篇 |
1996年 | 10篇 |
1995年 | 5篇 |
1994年 | 7篇 |
1992年 | 5篇 |
1991年 | 3篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1987年 | 10篇 |
1986年 | 9篇 |
1985年 | 6篇 |
1984年 | 10篇 |
1983年 | 7篇 |
1982年 | 8篇 |
1981年 | 9篇 |
1980年 | 9篇 |
1979年 | 7篇 |
1978年 | 6篇 |
1977年 | 7篇 |
1976年 | 3篇 |
1975年 | 4篇 |
1974年 | 5篇 |
1973年 | 6篇 |
1971年 | 6篇 |
1969年 | 2篇 |
排序方式: 共有472条查询结果,搜索用时 15 毫秒
21.
Steven J. OSTRO R. Scott HUDSON Lance A. M. BENNER Michael C. NOLAN Jon D. GIORGINI Daniel J. SCHEERES Raymond F. JURGENS Randy ROSE 《Meteoritics & planetary science》2001,36(9):1225-1236
Abstract— Goldstone and Arecibo delay‐Doppler radar imaging of asteroid 1998 ML 14 shortly after its discovery reveals a 1 km diameter spheroid with prominent topography on one side and subdued topography on the other. The object's radar and optical properties are typical for S‐class near‐Earth asteroids. The gravitational slopes of a shape model derived from the images and assumed to have a uniform density are shallow, exceeding 30° over only 4% of the surface. If 1998 ML14's density distribution is uniform, then its orbital environment is similar to a planetary body with a spheroidal gravitational field and is relatively stable. Integration of a radar‐refined orbit reveals that the 1998 apparition was the asteroid's closest approach to Earth since at least 1100 and until 2283, when it approaches to within 2.4 lunar distances. Outside of that time interval, orbit uncertainties based on the present set of observations preclude reliable prediction. 相似文献
22.
Jian-Yang Li Dennis Bodewits Lori M. Feaga Wayne Landsman Michael F. A’Hearn Max J. Mutchler Christopher T. Russell Lucy A. McFadden Carol A. Raymond 《Icarus》2011,216(2):640-649
We report a comprehensive review of the UV–visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift Gamma-ray Burst Observatory with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm are derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope as measured between 240 and 320 nm in the ultraviolet displays a sharp minimum near a sub-Earth longitude of 20°, and maximum in the eastern hemisphere. This is consistent with the longitudinal distribution of the spectral slope in the visible wavelength. The photometric uncertainty in the ultraviolet is ∼20%, and in the visible wavelengths it is better than 10%. The amplitude of Vesta’s rotational lightcurves is ∼10% throughout the range of wavelengths we observed, but is smaller at 950 nm (∼6%) near the 1-μm band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/near-infrared lightcurves with respect to sub-Earth longitude. Vesta’s average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible, and near-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies a lack of global space weathering on Vesta, as previously inferred from visible–near-infrared data. 相似文献
23.
Jian-Yang Li Lucille Le Corre Stefan E. Schröder Vishnu Reddy Brett W. Denevi Bonnie J. Buratti Stefano Mottola Martin Hoffmann Pablo Gutierrez-Marques Andreas Nathues Christopher T. Russell Carol A. Raymond 《Icarus》2013
Dawn spacecraft orbited Vesta for more than one year and collected a huge volume of multispectral, high-resolution data in the visible wavelengths with the Framing Camera. We present a detailed disk-integrated and disk-resolved photometric analysis using the Framing Camera images with the Minnaert model and the Hapke model, and report our results about the global photometric properties of Vesta. The photometric properties of Vesta show weak or no dependence on wavelengths, except for the albedo. At 554 nm, the global average geometric albedo of Vesta is 0.38 ± 0.04, and the Bond albedo range is 0.20 ± 0.02. The bolometric Bond albedo is 0.18 ± 0.01. The phase function of Vesta is similar to those of S-type asteroids. Vesta’s surface shows a single-peaked albedo distribution with a full-width-half-max ∼17% relative to the global average. This width is much smaller than the full range of albedos (from ∼0.55× to >2× global average) in localized bright and dark areas of a few tens of km in sizes, and is probably a consequence of significant regolith mixing on the global scale. Rheasilvia basin is ∼10% brighter than the global average. The phase reddening of Vesta measured from Dawn Framing Camera images is comparable or slightly stronger than that of Eros as measured by the Near Earth Asteroid Rendezvous mission, but weaker than previous measurements based on ground-based observations of Vesta and laboratory measurements of HED meteorites. The photometric behaviors of Vesta are best described by the Hapke model and the Akimov disk-function, when compared with the Minnaert model, Lommel–Seeliger model, and Lommel–Seeliger–Lambertian model. The traditional approach for photometric correction is validated for Vesta for >99% of its surface where reflectance is within ±30% of global average. 相似文献
24.
In this pre-Magellan review of aeolian processes on Venus we show that the average rate of resurfacing is less than 2 to 4 km/Ga, based on the impact crater size frequency distribution derived from Venera observations, reasonable values of the impact flux, and the assumption of steady state conditions between crater production and obliteration. Viscous relaxation of crater topography, burial by volcanic deposits, tectonic disruption, chemical and mechanical weathering and erosion, and accumulation of windblown sediments probably all contribute to resurfacing. Based on the rate of disappearance of radar-bright haloes around impact craters, the rate of removal of blocky surfaces has been estimated to be about 10–2 km/Ga. Pioneer-Venus altimetry data show that the average relative permittivity (at 17 cm radar wavelength) of the surface is too high for exposure of soils 10 cm deep, except for ~5% of the planet located primarily in tessarae terrains. The tectonically disrupted tessarae terrains may be sites of soil generation caused by tectonic disruption of bedrock and the presence of relatively steep slopes, or they may be terrains that serve as traps for windblown material. The overall impression is that Venus is a geologically active planet, but one dominated by volcanism and tectonism. On the other hand, theoretical considerations and experimental data on weathering and transport of surface materials suggest rather different conditions. Thermochemical arguments have been advanced that show: (1) CO2 and SO2 incorporate into weathering products at high elevation, (2) transport of weathered material by the wind to lower-elevation plains, and (3) re-equilibration of weathered material, releasing both CO2 and SO2. In addition, kinetic data suggest a rate of anhydrite formation of 1 km/Ga, a value comparable to the soil erosion rate on Mars, a planet with an active aeolian environment. Experiments and theoretical studies of aeolian processes show that measured surface winds are capable of moving sand and silt on Venus. Assuming that there is a ready sand supply, the flux could be as high as 2.5 × 10–5 g/cm/s, a value comparable to desert terrains on Earth. In an active aeolian abrasion environment, sand grains could have lifetimes <103 years. In addition, comminuted debris may be cold-welded to surfaces at the same time as abrasion is occurring. Magellan altimetry and SAR observations should allow assessment of which model for venusian surface modification (active vs. inactive surficial processes) is correct, given the global coverage, high spatial resolution, the calibrated nature of the data, and the potential during extended missions of acquiring multiple SAR views of the surface.Geology and Tectonics of Venus, special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena). 相似文献
25.
Ceres's global and localized mineralogical composition determined by Dawn's Visible and Infrared Spectrometer (VIR) 下载免费PDF全文
M. C. De Sanctis E. Ammannito F. G. Carrozzo M. Ciarniello M. Giardino A. Frigeri S. Fonte H. Y. McSween A. Raponi F. Tosi F. Zambon C. A. Raymond C. T. Russell 《Meteoritics & planetary science》2018,53(9):1844-1865
The Visible and Infrared Spectrometer (VIR) instrument on the Dawn mission observed Ceres’s surface at different spatial resolutions, revealing a nearly uniform global distribution of surface mineralogy. Clearly, Ceres experienced extensive water‐related processes and chemical differentiation. The surface is mainly composed of a dark component (carbon, magnetite?), Mg‐phyllosilicates, ammoniated clays, carbonates, and salts. The observed species suggest endogenous, global‐scale aqueous alteration. While mostly uniform at regional scale, Ceres’s surface shows small localized areas with different species and/or variations in abundances. Few local exposures of water ice are seen, especially at higher latitudes. Sodium carbonates have been identified in several areas on the surface, notably in Occator bright faculae. Organic matter has also been discovered in several places, most conspicuously in a large area close to the Ernutet crater. The observed mineralogies, with the presence of ammoniated species and sodium salts, have a strong resemblance to materials found on other bodies of the outer solar system, such as Enceladus. This poses some questions about the original material from which Ceres accreted, suggesting a colder environment for such material with respect to Ceres’s present position. 相似文献
26.
Hathaway D.H. Beck J.G. Bogart R.S. Bachmann K.T. Khatri G. Petitto J.M. Han S. Raymond J. 《Solar physics》2000,193(1-2):299-312
Spectra of the cellular photospheric flows are determined from observations acquired by the MDI instrument on the SOHO spacecraft. Spherical harmonic spectra are obtained from the full-disk observations. Fourier spectra are obtained from the high-resolution observations. The p-mode oscillation signal and instrumental artifacts are reduced by temporal filtering of the Doppler data. The resulting spectra give power (kinetic energy) per wave number for effective spherical harmonic degrees from 1 to over 3000. Significant power is found at all wavenumbers, including the small wavenumbers representative of giant cells. The time evolution of the spectral coefficients indicates that these small wavenumber components rotate at the solar rotation rate and thus represent a component of the photospheric cellular flows. The spectra show distinct peaks representing granules and supergranules but no distinct features at wavenumbers representative of mesogranules or giant cells. The observed cellular patterns and spectra are well represented by a model that includes two distinct modes – granules and supergranules. 相似文献
27.
Gallagher Peter T. Williams David R. Phillips Kenneth J.H. Mathioudakis Mihalis Smartt Raymond N. Keenan Francis P. 《Solar physics》2000,195(2):367-380
We report on observations of a large eruptive event associated with a flare that occurred on 27 September 1998 made with the Richard B. Dunn Solar Telescope at Sacramento Peak Observatory (several wave bands including off-line-center H), in soft and hard X-rays (GOES and BATSE), and in several TRACE wave bands (including Feix/x 171 Å, Fexii 195 Å, and Civ 1550 Å). The flare initiation is signaled by two H foot-point brightenings which are closely followed by a hard X-ray burst and a subsequent gradual increase in other wavelengths. The flare light curves show a complicated, three-component structure which includes two minor maxima before the main GOES class C5.2 peak after which there is a characteristic exponential decline. During the initial stages, a large spray event is observed within seconds of the hard X-ray burst which can be directly associated with a two-ribbon flare in H. The emission returns to pre-flare levels after about 35 min, by which time a set of bright post-flare loops have begun to form at temperatures of about 1.0–1.5 MK. Part of the flare plasma also intrudes into the penumbra of a large sunspot, generally a characteristic of very powerful flares, but the flare importance in GOES soft X-rays is in fact relatively modest. Much of the energy appears to be in the form of a second ejection which is observed in optical and ultraviolet bands, traveling out via several magnetic flux tubes from the main flare site (about 60° from Sun center) to beyond the limb. 相似文献
28.
A series of calculated thermal histories of Mars is presented, and their possible relation to surface tectonic history is discussed. The models include convective heat transport through an empirical approximation, and heating by radioactivity and core segregation. Initial temperature, Ti, and the timing and duration of core segregation are treated as free parameters. Ti is the main determinant of Martian thermal evolution: as it is varied from 20 to 100% of the present mean temperature, the maximum in surface heat flux moves from very recent to very early in Martian history. For the latter cases, the details of core segregation control the detailed timing of a peak in the thermal flux that exceeded 100 mW/m2. It is suggested that the early disruption of cratered terrain crust in the northern hemisphere and subsequent volcanic resurfacing may have been related to core segregation. This would be consistent with a scenario in which an early period of core segregation generated a marked peak in the thermal flux that may have lead to extensivev partial melting and volcanism. This scenario would require Mars to have had an initial mean temperature comparable to the present value. 相似文献
29.
Raymond A. Assel 《Climatic change》1991,18(4):377-395
Statistical ice cover models were used to project daily mean basin ice cover and annual ice cover duration for Lakes Superior and Erie. Models were applied to a 1951–80 base period and to three 30-year steady double carbon dioxide (2 × CO2) scenarios produced by the Geophysical Fluid Dynamics Laboratory (GFDL), the Goddard Institute of Space Studies (GISS), and the Oregon State University (OSU) general circulation models. Ice cover estimates were made for the West, Central, and East Basins of Lake Erie and for the West, East, and Whitefish Bay Basins of Lake Superior. Average ice cover duration for the 1951– 80 base period ranged from 13 to 16 weeks for individual lake basins. Reductions in average ice cover duration under the three 2 × CO2 scenarios for individual lake basins ranged from 5 to 12 weeks for the OSU scenario, 8 to 13 weeks for the GISS scenario, and 11 to 13 weeks for GFDL scenario. Winters without ice formation become common for Lake Superior under the GFDL scenario and under all three 2 × CO2 scenarios for the Central and East Basins of Lake Erie. During an average 2 × CO2 winter, ice cover would be limited to the shallow areas of Lakes Erie and Superior. Because of uncertainties in the ice cover models, the results given here represent only a first approximation and are likely to represent an upper limit of the extent and duration of ice cover under the climate change projected by the three 2 × CO2scenarios. Notwithstanding these limitations, ice cover projected by the 2 × CO2 scenarios provides a preliminary assessment of the potential sensitivity of the Great Lakes ice cover to global warming. Potential environmental and socioeconomic impacts of a 2 × CO2 warming include year-round navigation, change in abundance of some fish species in the Great Lakes, discontinuation or reduction of winter recreational activities, and an increase in winter lake evaporation. 相似文献
30.
Climate change is one of the greatest threats to humanity and requires immediate action. Schuldt, Konrath, and Schwarz (2011) suggested that beliefs in environmental phenomena can be influenced by the terminology used to describe it: changing question wording from global warming to climate change resulted in a 6.3 percentage point increase in belief in environmental phenomena. This association was moderated by political self-identification, with Republicans being 16.2 percentage points more likely to believe in climate change than in global warming, with Democrats showing no difference. The potential for connotative meanings to shift over time and the sociopolitical changes since the original study, potential policy and environmental campaign implications, and an expansion of these findings to other countries, motivated an attempt to replicate this important finding. This pre-registered study repeated the original procedures in the United States of America and two other countries (United Kingdom and Australia; total N = 5,717). Although question wording no longer had a significant effect on beliefs in climate change/global warming, the association of political self-identification with beliefs in environmental phenomena replicated in all three countries, with Conservatives consistently believing less in climate change/global warming than Liberals. The potential impacts of temporal and methodological differences on the discrepancies between this study's and the original's findings are discussed. 相似文献