首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   19篇
  国内免费   9篇
测绘学   35篇
大气科学   50篇
地球物理   135篇
地质学   227篇
海洋学   23篇
天文学   126篇
自然地理   56篇
  2022年   6篇
  2021年   4篇
  2020年   8篇
  2019年   6篇
  2018年   21篇
  2017年   12篇
  2016年   10篇
  2015年   13篇
  2014年   17篇
  2013年   39篇
  2012年   27篇
  2011年   28篇
  2010年   17篇
  2009年   30篇
  2008年   28篇
  2007年   16篇
  2006年   16篇
  2005年   18篇
  2004年   22篇
  2003年   14篇
  2002年   18篇
  2001年   11篇
  2000年   7篇
  1999年   9篇
  1998年   9篇
  1997年   9篇
  1996年   17篇
  1995年   7篇
  1994年   7篇
  1992年   10篇
  1991年   5篇
  1990年   5篇
  1989年   7篇
  1988年   5篇
  1987年   12篇
  1986年   11篇
  1985年   8篇
  1984年   11篇
  1983年   10篇
  1982年   10篇
  1981年   13篇
  1980年   13篇
  1979年   10篇
  1978年   11篇
  1977年   7篇
  1976年   6篇
  1975年   6篇
  1974年   5篇
  1973年   13篇
  1971年   8篇
排序方式: 共有652条查询结果,搜索用时 15 毫秒
11.
In this pre-Magellan review of aeolian processes on Venus we show that the average rate of resurfacing is less than 2 to 4 km/Ga, based on the impact crater size frequency distribution derived from Venera observations, reasonable values of the impact flux, and the assumption of steady state conditions between crater production and obliteration. Viscous relaxation of crater topography, burial by volcanic deposits, tectonic disruption, chemical and mechanical weathering and erosion, and accumulation of windblown sediments probably all contribute to resurfacing. Based on the rate of disappearance of radar-bright haloes around impact craters, the rate of removal of blocky surfaces has been estimated to be about 10–2 km/Ga. Pioneer-Venus altimetry data show that the average relative permittivity (at 17 cm radar wavelength) of the surface is too high for exposure of soils 10 cm deep, except for ~5% of the planet located primarily in tessarae terrains. The tectonically disrupted tessarae terrains may be sites of soil generation caused by tectonic disruption of bedrock and the presence of relatively steep slopes, or they may be terrains that serve as traps for windblown material. The overall impression is that Venus is a geologically active planet, but one dominated by volcanism and tectonism. On the other hand, theoretical considerations and experimental data on weathering and transport of surface materials suggest rather different conditions. Thermochemical arguments have been advanced that show: (1) CO2 and SO2 incorporate into weathering products at high elevation, (2) transport of weathered material by the wind to lower-elevation plains, and (3) re-equilibration of weathered material, releasing both CO2 and SO2. In addition, kinetic data suggest a rate of anhydrite formation of 1 km/Ga, a value comparable to the soil erosion rate on Mars, a planet with an active aeolian environment. Experiments and theoretical studies of aeolian processes show that measured surface winds are capable of moving sand and silt on Venus. Assuming that there is a ready sand supply, the flux could be as high as 2.5 × 10–5 g/cm/s, a value comparable to desert terrains on Earth. In an active aeolian abrasion environment, sand grains could have lifetimes <103 years. In addition, comminuted debris may be cold-welded to surfaces at the same time as abrasion is occurring. Magellan altimetry and SAR observations should allow assessment of which model for venusian surface modification (active vs. inactive surficial processes) is correct, given the global coverage, high spatial resolution, the calibrated nature of the data, and the potential during extended missions of acquiring multiple SAR views of the surface.Geology and Tectonics of Venus, special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   
12.
A synthesis of previous results, which we dub the “standard model,” provides a prediction as to how isotope fractionation during sulfate reduction should respond to physiological variables such as specific rate of sulfate reduction and environmental variables such as substrate availability and temperature. The standard model suggests that isotope fractionation should decrease with increasing specific rates of sulfate reduction (rate per cell). Furthermore, the standard model predicts that low fractionations should be found at both high and low temperatures whereas the highest fractionations should be found in the intermediate temperature range. These fractionation trends are controlled, as a function of temperature, by the balance between the transfer rates of sulfate into and out of the cell and the exchange between the sulfur pools internal to the organism. We test this standard model by conducting experiments on the growth physiology and isotope fractionation, as a function of temperature, by the sulfate-reducing bacterium Desulfovibrio desulfuricans (DSMZ 642). Our results contrast with the “standard model” by showing a positive correlation between specific rates of sulfate reduction and fractionation. Also by contrast with the standard model, we found the highest fractionations at low and high temperatures and the lowest fractionations in the intermediate temperature range. We develop a fractionation model which can be used to explain both our results as well as the results of the “standard model.” Differences in fractionation with temperature relate to differences in the specific temperature response of internal enzyme kinetics as well as the exchange rates of sulfate in and out of the cell. It is expected that the kinetics of these processes will show strain-specific differences.  相似文献   
13.
New exploration techniques are vital to the search for new orebodies in mature terranes, as well as for extensions of existing orebodies. This research focused on application of low-temperature dating techniques (primarily apatite fission-tracks) and stable isotope measurements (carbon and oxygen in carbonate rocks) in and around the Pipeline deposit, a Carlin-type gold system. The primary purpose of the project was to assess whether these techniques could provide exploration vectors that might be used in conjunction with other geologic, geochemical, and geophysical techniques to determine the locus of fossil hydrothermal fluid flow, and the attendant possibility of finding economic mineral deposits.At Pipeline, measurements of apatite fission-tracks and (U − Th) / He geochronometry yield a clear indication of the elevated temperatures associated with the fossil hydrothermal system. The pattern is one of a central target (Pipeline deposit) with decreasing thermal effects as far as several kilometers laterally from the known ore zone. Because of the irregular nature of fluid flow through fractures, a significant number of samples are required to discern this pattern, but the pattern is quite clear from the 32 samples in and around the Pipeline pit.Stable isotope measurements of carbonate rocks yield patterns centered on the Pipeline pit area. Oxygen isotopes in particular are shifted toward lower values as the result of interaction between the hydrothermal fluids and carbonate rocks. Carbon isotopes show a pattern, but it is somewhat more difficult to interpret than the oxygen isotope pattern. As with the geochronometric patterns, isotopic indications of fluid flow are present several kilometers from the ore zone at Pipeline. Also as with the geochronometric data, a relatively large sample set is required to see the pattern. At Pipeline, the patterns are evident in approximately 45 surface samples and very clearly in the cross-sections containing approximately 100 samples.From these data, it is clear that thermal and stable isotopic measurements on rocks at a significant distance from the known Pipeline hydrothermal system record the passage of hot fluids through the rock. Both techniques provide a footprint of the Pipeline system that is several diameters larger than the ore zone (as presently known). Therefore, thermochronologic and stable isotopic measurements can be utilized in conjunction with other techniques as part of an overall exploration strategy for Carlin-type deposits. Although these techniques do not provide a direct indication of the metal content of the fossil hydrothermal fluids, they do provide an indication of the robustness of fluid flow and the potential size of a hydrothermal system.  相似文献   
14.
Silicic volcanic deposits (>65 wt% SiO2), which occur as domes, lavas and pyroclastic deposits, are relatively abundant in the Macolod Corridor, SW Luzon, Philippines. At Makiling stratovolcano, silicic domes occur along the margins of the volcano and are chemically similar to the silicic lavas that comprise part of the volcano. Pyroclastic flows are associated with the Laguna de Bay Caldera and these are chemically distinct from the domes and lavas at Makiling stratovolcano. As a whole, samples from the Laguna de Bay Caldera contain lower concentrations of MgO and higher concentrations of Fe2O3(t) than the samples from domes and lavas. The Laguna de Bay samples are more enriched in incompatible trace elements. The silicic rocks from the domes, Makiling Volcano and Laguna de Bay Caldera all contain high alkalis and high K2O/Na2O ratios. Melting experiments of primitive basalts and andesites demonstrate that it is difficult to produce high K2O/Na2O silicic magmas by fractional crystallization or partial melting of a low K2O/Na2O source. However, recent melting experiments (Sisson et al., Contrib Mineral Petrol 148:635–661, 2005) demonstrate that extreme fractional crystallization or partial melting of K-rich basalts can produce these silicic magmas. Our model for the generation of the silicic magmas in the Macolod Corridor requires partial melting of mantle-derived, evolved, moderate to K-rich, crystallized calc-alkaline magmas that ponded and crystallized in the mid-crust. Major and trace element variations, along with oxygen isotopes and ages of the deposits, are consistent with this model. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
15.
High-resolution space-borne remote sensing data are investigated for their potential to extract relevant parameters for a vulnerability analysis of buildings in European countries. For an evaluation of large earthquake scenarios, the number of parameters in models for vulnerability is reduced to a minimum of relevant information such as the type of building (age, material, number of storeys) and the geological and spatial context. Building-related parameters can be derived from remote sensing data either directly (e.g. height) or indirectly based on the recognition of the urban structure type in which the buildings are located. With the potential of a fully- or semi-automatic inventory of the buildings and their parameters, high-resolution satellite data and techniques for their processing are a useful supporting tool for the assessment of vulnerability.  相似文献   
16.
17.
18.
19.
Raymond L Bryant 《Area》1997,29(1):5-19
Summary In the context of a deepening impasse in Third World environmental research, this paper suggests that researchers should adopt a political ecology perspective to ensure that research addresses the political and economic issues that underlie the Third World's environmental problems. Since an understanding of unequal power relations is central to political ecology, the paper considers how questions of power influence human-environmental interaction, before assessing briefly how research of this kind might contribute to a resolution of the Third World's environmental problems.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号