首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   17篇
  国内免费   7篇
测绘学   7篇
大气科学   44篇
地球物理   90篇
地质学   181篇
海洋学   25篇
天文学   120篇
自然地理   38篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   16篇
  2017年   12篇
  2016年   7篇
  2015年   10篇
  2014年   11篇
  2013年   35篇
  2012年   14篇
  2011年   21篇
  2010年   11篇
  2009年   19篇
  2008年   21篇
  2007年   15篇
  2006年   14篇
  2005年   15篇
  2004年   16篇
  2003年   13篇
  2002年   13篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   10篇
  1997年   14篇
  1996年   10篇
  1995年   8篇
  1994年   7篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1987年   10篇
  1986年   10篇
  1985年   8篇
  1984年   12篇
  1983年   9篇
  1982年   8篇
  1981年   10篇
  1980年   9篇
  1979年   7篇
  1978年   6篇
  1977年   7篇
  1976年   3篇
  1975年   4篇
  1974年   5篇
  1973年   6篇
  1971年   6篇
  1933年   2篇
排序方式: 共有505条查询结果,搜索用时 12 毫秒
11.
In recently developed laser-driven shockless compression experiments an ablatively driven shock in a primary target is transformed into a ramp compression wave in a secondary target via unloading followed by stagnation across an intermediate vacuum gap. Current limitations on the achievable peak longitudinal stresses are limited by the ability of shaping the temporal profile of the ramp compression pulse. We report on new techniques using graded density reservoirs for shaping the loading profile and extending these techniques to high peak pressures.  相似文献   
12.
The data reduction of the metric photography from the Apollo missions is progressing in an orderly fashion within the Defense Mapping Agency (DMA). The data from all three Apollo missions is ultimately to be utilized for development of a lunar control network covering approximately 20% of the lunar surface. In this paper, the status of the data reduction from the Apollo 15 mission is summarized. More specifically, the evaluation of system parameters, proposed control generation plan, and the anticipated characteristics of the network are discussed.Communication presented at the Conference on Lunar Dynamics and Observational Coordinate Systems, held January 15–17, 1973, at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   
13.
Abstract— Goldstone and Arecibo delay‐Doppler radar imaging of asteroid 1998 ML 14 shortly after its discovery reveals a 1 km diameter spheroid with prominent topography on one side and subdued topography on the other. The object's radar and optical properties are typical for S‐class near‐Earth asteroids. The gravitational slopes of a shape model derived from the images and assumed to have a uniform density are shallow, exceeding 30° over only 4% of the surface. If 1998 ML14's density distribution is uniform, then its orbital environment is similar to a planetary body with a spheroidal gravitational field and is relatively stable. Integration of a radar‐refined orbit reveals that the 1998 apparition was the asteroid's closest approach to Earth since at least 1100 and until 2283, when it approaches to within 2.4 lunar distances. Outside of that time interval, orbit uncertainties based on the present set of observations preclude reliable prediction.  相似文献   
14.
We use a variety of ground-based and satellite measurements to identify the source of the ground level event (GLE) beginning near 06∶30 UT on 21 August, 1979 as the 2B flare with maximum at ~06∶15 UT in McMath region 16218. This flare differed from previous GLE-associated flares in that it lacked a prominent impulsive phase, having a peak ~9 GHz burst flux density of only 27 sfu and a ?20 keV peak hard X-ray flux of ?3 × 10-6 ergs cm-2s-1. Also, McMath 16218 was magnetically less complex than the active regions in which previous cosmic-ray flares have occurred, containing essentially only a single sunspot with a rudimentary penumbra. The flare was associated with a high speed (?700 km s-1) mass ejection observed by the NRL white light coronagraph aboard P78-1 and a shock accelerated (SA) event observed by the low frequency radio astronomy experiment on ISEE-3.  相似文献   
15.
We report a comprehensive review of the UV–visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift Gamma-ray Burst Observatory with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm are derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope as measured between 240 and 320 nm in the ultraviolet displays a sharp minimum near a sub-Earth longitude of 20°, and maximum in the eastern hemisphere. This is consistent with the longitudinal distribution of the spectral slope in the visible wavelength. The photometric uncertainty in the ultraviolet is ∼20%, and in the visible wavelengths it is better than 10%. The amplitude of Vesta’s rotational lightcurves is ∼10% throughout the range of wavelengths we observed, but is smaller at 950 nm (∼6%) near the 1-μm band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/near-infrared lightcurves with respect to sub-Earth longitude. Vesta’s average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible, and near-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies a lack of global space weathering on Vesta, as previously inferred from visible–near-infrared data.  相似文献   
16.
Dawn spacecraft orbited Vesta for more than one year and collected a huge volume of multispectral, high-resolution data in the visible wavelengths with the Framing Camera. We present a detailed disk-integrated and disk-resolved photometric analysis using the Framing Camera images with the Minnaert model and the Hapke model, and report our results about the global photometric properties of Vesta. The photometric properties of Vesta show weak or no dependence on wavelengths, except for the albedo. At 554 nm, the global average geometric albedo of Vesta is 0.38 ± 0.04, and the Bond albedo range is 0.20 ± 0.02. The bolometric Bond albedo is 0.18 ± 0.01. The phase function of Vesta is similar to those of S-type asteroids. Vesta’s surface shows a single-peaked albedo distribution with a full-width-half-max ∼17% relative to the global average. This width is much smaller than the full range of albedos (from ∼0.55× to >2× global average) in localized bright and dark areas of a few tens of km in sizes, and is probably a consequence of significant regolith mixing on the global scale. Rheasilvia basin is ∼10% brighter than the global average. The phase reddening of Vesta measured from Dawn Framing Camera images is comparable or slightly stronger than that of Eros as measured by the Near Earth Asteroid Rendezvous mission, but weaker than previous measurements based on ground-based observations of Vesta and laboratory measurements of HED meteorites. The photometric behaviors of Vesta are best described by the Hapke model and the Akimov disk-function, when compared with the Minnaert model, Lommel–Seeliger model, and Lommel–Seeliger–Lambertian model. The traditional approach for photometric correction is validated for Vesta for >99% of its surface where reflectance is within ±30% of global average.  相似文献   
17.
The Dawn mission has provided new evidence strengthening the identification of asteroid Vesta as the parent body of the howardite, eucrite, and diogenite (HED) meteorites. The evidence includes Vesta's petrologic complexity, detailed spectroscopic characteristics, unique space weathering, diagnostic geochemical abundances and neutron absorption characteristics, chronology of surface units and impact history, occurrence of exogenous carbonaceous chondritic materials in the regolith, and dimensions of the core, all of which are consistent with HED observations and constraints. Global mapping of the distributions of HED lithologies by Dawn cameras and spectrometers provides the missing geologic context for these meteorites, thereby allowing tests of petrogenetic models and increasing their scientific value.  相似文献   
18.
The surface composition of Vesta, the most massive intact basaltic object in the asteroid belt, is interesting because it provides us with an insight into magmatic differentiation of planetesimals that eventually coalesced to form the terrestrial planets. The distribution of lithologic and compositional units on the surface of Vesta provides important constraints on its petrologic evolution, impact history, and its relationship with vestoids and howardite‐eucrite‐diogenite (HED) meteorites. Using color parameters (band tilt and band curvature) originally developed for analyzing lunar data, we have identified and mapped HED terrains on Vesta in Dawn Framing Camera (FC) color data. The average color spectrum of Vesta is identical to that of howardite regions, suggesting an extensive mixing of surface regolith due to impact gardening over the course of solar system history. Our results confirm the hemispherical dichotomy (east‐west and north‐south) in albedo/color/composition that has been observed by earlier studies. The presence of diogenite‐rich material in the southern hemisphere suggests that it was excavated during the formation of the Rheasilvia and Veneneia basins. Our lithologic mapping of HED regions provides direct evidence for magmatic evolution of Vesta with diogenite units in Rheasilvia forming the lower crust of a differentiated object.  相似文献   
19.
The development of a coronal mass ejection on 9 July 1996 has been analyzed by comparing the observations of the LASCO/SOHO coronagraphs with those of the Nancay radioheliograph. The spatial and temporal evolution of the associated radioburst is complex and involves a long-duration continuum. The analysis of the time sequence of the radio continuum reveals the existence of distinct phases associated with distinct reconnection processes and magnetic restructuring of the corona. Electrons are accelerated in association with these reconnection processes. An excellent spatial association is found between the position and extension of the radio source and the CME seen by LASCO. Furthermore, it is shown that the topology and evolution of the source of the radio continuum involve successive interactions between two systems of loops. These successive interactions lead to magnetic reconnection, then to a large scale coronal restructuring. Thus electrons of coronal origin may have access to the interplanetary medium in a large range of heliographic latitudes as revealed by the Ulysses observations.  相似文献   
20.
In this pre-Magellan review of aeolian processes on Venus we show that the average rate of resurfacing is less than 2 to 4 km/Ga, based on the impact crater size frequency distribution derived from Venera observations, reasonable values of the impact flux, and the assumption of steady state conditions between crater production and obliteration. Viscous relaxation of crater topography, burial by volcanic deposits, tectonic disruption, chemical and mechanical weathering and erosion, and accumulation of windblown sediments probably all contribute to resurfacing. Based on the rate of disappearance of radar-bright haloes around impact craters, the rate of removal of blocky surfaces has been estimated to be about 10–2 km/Ga. Pioneer-Venus altimetry data show that the average relative permittivity (at 17 cm radar wavelength) of the surface is too high for exposure of soils 10 cm deep, except for ~5% of the planet located primarily in tessarae terrains. The tectonically disrupted tessarae terrains may be sites of soil generation caused by tectonic disruption of bedrock and the presence of relatively steep slopes, or they may be terrains that serve as traps for windblown material. The overall impression is that Venus is a geologically active planet, but one dominated by volcanism and tectonism. On the other hand, theoretical considerations and experimental data on weathering and transport of surface materials suggest rather different conditions. Thermochemical arguments have been advanced that show: (1) CO2 and SO2 incorporate into weathering products at high elevation, (2) transport of weathered material by the wind to lower-elevation plains, and (3) re-equilibration of weathered material, releasing both CO2 and SO2. In addition, kinetic data suggest a rate of anhydrite formation of 1 km/Ga, a value comparable to the soil erosion rate on Mars, a planet with an active aeolian environment. Experiments and theoretical studies of aeolian processes show that measured surface winds are capable of moving sand and silt on Venus. Assuming that there is a ready sand supply, the flux could be as high as 2.5 × 10–5 g/cm/s, a value comparable to desert terrains on Earth. In an active aeolian abrasion environment, sand grains could have lifetimes <103 years. In addition, comminuted debris may be cold-welded to surfaces at the same time as abrasion is occurring. Magellan altimetry and SAR observations should allow assessment of which model for venusian surface modification (active vs. inactive surficial processes) is correct, given the global coverage, high spatial resolution, the calibrated nature of the data, and the potential during extended missions of acquiring multiple SAR views of the surface.Geology and Tectonics of Venus, special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号