全文获取类型
收费全文 | 237篇 |
免费 | 4篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 12篇 |
大气科学 | 25篇 |
地球物理 | 34篇 |
地质学 | 91篇 |
海洋学 | 3篇 |
天文学 | 71篇 |
综合类 | 1篇 |
自然地理 | 7篇 |
出版年
2023年 | 2篇 |
2022年 | 4篇 |
2021年 | 5篇 |
2020年 | 1篇 |
2019年 | 4篇 |
2018年 | 11篇 |
2017年 | 17篇 |
2016年 | 11篇 |
2015年 | 9篇 |
2014年 | 11篇 |
2013年 | 10篇 |
2012年 | 8篇 |
2011年 | 15篇 |
2010年 | 7篇 |
2009年 | 15篇 |
2008年 | 11篇 |
2007年 | 11篇 |
2006年 | 11篇 |
2005年 | 11篇 |
2004年 | 11篇 |
2003年 | 8篇 |
2002年 | 5篇 |
2001年 | 9篇 |
2000年 | 4篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 5篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有244条查询结果,搜索用时 15 毫秒
11.
Muthusamy Murugan Paddu Krishnappa Shetty Raju Ravi Aavudai Anandhi Arulappan Joseph Rajkumar 《Climatic change》2012,110(3-4):737-753
In this study we analyzed climate and crop yields data from Indian cardamom hills for the period 1978–2007 to investigate whether there were significant changes in weather elements, and if such changes have had significant impact on the production of spices and plantation crops. Spatial and temporal variations in air temperatures (maximum and minimum), rainfall and relative humidity are evident across stations. The mean air temperature increased significantly during the last 30?years; the greatest increase and the largest significant upward trend was observed in the daily temperature. The highest increase in minimum temperature was registered for June (0.37°C/18?years) at the Myladumpara station. December and January showed greater warming across the stations. Rainfall during the main monsoon months (June–September) showed a downward trend. Relative humidity showed increasing and decreasing trends, respectively, at the cardamom and tea growing tracts. The warming trend coupled with frequent wet and dry spells during the summer is likely to have a favorable effect on insect pests and disease causing organisms thereby pesticide consumption can go up both during excess rainfall and drought years. The incidence of many minor pest insects and disease pathogens has increased in the recent years of our study along with warming. Significant and slight increases in the yield of small cardamom (Elettaria cardamomum M.) and coffee (Coffea arabica), respectively, were noticed in the recent years.; however the improvement of yield in tea (Thea sinensis) and black pepper (Piper nigrum L.) has not been seen in our analysis. 相似文献
12.
The concentrations of dissolved boron have been measured during different seasons in three estuaries, the Tapi, Narmada and the Mandovi situated on the western coast of India, to investigate its geochemical behavior and inputs from the localized anthropogenic pressures of industrial effluents and sewage discharge. The measured boron concentrations in these estuaries (except the Tapi during non-monsoon) at salinity ≤0.1 fall in a narrow range?~?2–4 μmol/kg (average B?~?2.4?±?0.8 μmol/kg) within the reported wide range?~?0.1–18.6 μmol/kg for global rivers. The much higher estimate of boron concentration in the Tapi River during non-monsoon is attributed to its possible additional supply from the sewage and/or industrial effluents discharged along the river course. During monsoon, the rains seem to be a significant source of dissolved boron to all the three rivers. The distribution of dissolved boron in each estuary exhibits a conservative behavior during the seasons sampled suggestive of no measurable addition or removal of boron in the estuarine region. The orders of magnitude differences in boron concentration between the river waters and seawater, and the conservative behavior of dissolved boron indicate that its major contributor to the estuaries sampled is seawater. 相似文献
13.
M. Ravi Kumar D. C. Mishra B. Singh D. Ch. Venkat Raju M. Singh 《Journal of the Geological Society of India》2013,81(1):61-78
Spectral analysis of digital data of the Bouguer anomaly map of NW India suggests maximum depth of causative sources as 134 km that represents the regional field and coincides with the upwarped lithosphere — asthenosphere boundary as inferred from seismic tomography. This upwarping of the Indian plate in this section is related to the lithospheric flexure due to its down thrusting along the Himalayan front. The other causative layers are located at depths of 33, 17, and 6 km indicating depth to the sources along the Moho, lower crust and the basement under Ganga foredeep, the former two also appear to be upwarped as crustal bulge with respect to their depths in adjoining sections. The gravity and the geoid anomaly maps of the NW India provide two specific trends, NW-SE and NE-SW oriented highs due to the lithospheric flexure along the NW Himalayan fold belt in the north and the Western fold belt (Kirthar -Sulaiman ranges, Pakistan) and the Aravalli Delhi Fold Belt (ADFB) in the west, respectively. The lithospheric flexures also manifest them self as crustal bulge and shallow basement ridges such as Delhi — Lahore — Sagodha ridge and Jaisalmer — Ganganagar ridge. There are other NE-SW oriented gravity and geoid highs that may be related to thermal events such as plumes that affected this region. The ADFB and its margin faults extend through Ganga basin and intersect the NW Himalayan front in the Nahan salient and the Dehradun reentrant that are more seismogenic. Similarly, the extension of NE-SW oriented gravity highs associated with Jaisalmer — Ganganagar flexure and ridge towards the Himalayan front meets the gravity highs of the Kangra reentrant that is also seismogenic and experienced a 7.8 magnitude earthquake in 1905. Even parts of the lithospheric flexure and related basement ridge of Delhi — Lahore — Sargodha show more seismic activity in its western part and around Delhi as compared to other parts. The geoid highs over the Jaisalmer — Ganganagar ridge passes through Kachchh rift and connects it to plate boundaries towards the SW (Murray ridge) and NW (Kirthar range) that makes the Kachchh as a part of a diffused plate boundary, which, is one of the most seismogenic regions with large scale mafic intrusive that is supported from 3-D seismic tomography. The modeling of regional gravity field along a profile, Ganganagar — Chandigarh extended beyond the Main Central Thrust (MCT) constrained from the various seismic studies across different parts of the Himalaya suggests crustal thickening from 35-36 km under plains up to ~56 km under the MCT for a density of 3.1 g/cm3 and 3.25 g/cm3 of the lower most crust and the upper mantle, respectively. An upwarping of ~3 km in the Moho, crust and basement south of the Himalayan frontal thrusts is noticed due to the lithospheric flexure. High density for the lower most crust indicates partial eclogitization that releases copious fluid that may cause reduction of density in the upper mantle due to sepentinization (3.25 g/cm3). It has also been reported from some other sections of Himalaya. Modeling of the residual gravity and magnetic fields along the same profile suggest gravity highs and lows of NW India to be caused by basement ridges and depressions, respectively. Basement also shows high susceptibility indicating their association with mafic rocks. High density and high magnetization rocks in the basement north of Chandigarh may represent part of the ADFB extending to the Himalayan front primarily in the Nahan salient. The Nahan salient shows a basement uplift of ~ 2 km that appears to have diverted courses of major rivers on either sides of it. The shallow crustal model has also delineated major Himalayan thrusts that merge subsurface into the Main Himalayan Thrust (MHT), which, is a decollment plane. 相似文献
14.
Marrapu Balendra M. Kukunuri Anjana Jakka Ravi S. 《Geotechnical and Geological Engineering》2021,39(8):5879-5894
Geotechnical and Geological Engineering - Evaluation of slope stability using conventional limit equilibrium methods is very time consuming and repetitive, while the use of simplified approaches... 相似文献
15.
Dubey Anant Aishwarya Borthakur Annesh Ravi K. 《Geotechnical and Geological Engineering》2022,40(4):2371-2378
Geotechnical and Geological Engineering - Total soil suction is considered to be the accumulative influence of matric and osmotic suction, assuming that the soil is biologically inert. However,... 相似文献
16.
A three-dimensional regional ocean model is used to examine the impact of positive Indian ocean dipole (pIOD) events on the coastal upwelling features at the southwest coast of India (SWCI). Two model experiments are carried out with different surface boundary conditions that prevailed in the normal and pIOD years from 1982 to 2010. Model experiments demonstrate the weakening of coastal upwelling at the SWCI in the pIOD years. The reduced southward meridional wind stress off the SWCI leads to comparatively lower offshore Ekman transport during August–October in the pIOD years to that in normal years. The suppressed coastal upwelling results in warmer sea surface temperature and deeper thermocline in the pIOD years during June–September. The offshore spatial extent of upwelled colder (<?22 °C) water was up to 75.5° E in August–September in normal years that was limited up to 76.2° E in pIOD years. The heat budget analysis reveals the decreased contribution of vertical entrainment process to the mixed layer cooling in pIOD years which is almost half of that of normal years in October. The net heat flux term shows warming tendency during May–November with a higher magnitude (+?0.4 °C day?1) in normal years than pIOD years (+?0.28 °C day?1). The biological productivity is found to reduce during the pIOD years as the concentration of phytoplankton and zooplankton decreases over the region of coastal upwelling at SWCI. Nitrate concentration in the pIOD years dropped by half during August–September and dropped by an order of magnitude in October as compared to its ambient concentration of 13 μmol L?1 in normal years. 相似文献
17.
D. Purushotham A. Narsing Rao M. Ravi Prakash Shakeel Ahmed G. Ashok Babu 《Journal of the Geological Society of India》2011,77(6):539-548
Maheshwaram watershed is situated in Ranga Reddy district of at a distance of about 30 km south of Hyderabad. The watershed
has an area of 53 km2 and has hard rock aquifers with semi-arid climate. The study area has been expanding at a fast pace and now has the distinction
of being one of the fastest growing urban centers, facing the problem of groundwater depletion and quality deterioration due
to the absence of perennial source of surface water and also due to over exploitation. Human activities involving industrial
and agricultural development and the inadequate management of land and water resources have, directly or indirectly resulted
in the degradation of environment viz. water and soil. 相似文献
18.
I A Girach Narendra Ojha Prabha R Nair Yogesh K Tiwari K Ravi Kumar 《Journal of Earth System Science》2018,127(1):15
In situ measurements of near-surface ozone (\(\hbox {O}_{3})\), carbon monoxide (CO), and methane (\(\hbox {CH}_{4})\) were carried out over the Bay of Bengal (BoB) as a part of the Continental Tropical Convergence Zone (CTCZ) campaign during the summer monsoon season of 2009. \(\hbox {O}_{3}\), CO and \(\hbox {CH}_{4}\) mixing ratios varied in the ranges of 8–54 ppbv, 50–200 ppbv and 1.57–2.15 ppmv, respectively during 16 July–17 August 2009. The spatial distribution of mean tropospheric \(\hbox {O}_{3}\) from satellite retrievals is found to be similar to that in surface \(\hbox {O}_{3}\) observations, with higher levels over coastal and northern BoB as compared to central BoB. The comparison of in situ measurements with the Monitoring Atmospheric Composition & Climate (MACC) global reanalysis shows that MACC simulations reproduce the observations with small mean biases of 1.6 ppbv, –2.6 ppbv and 0.07 ppmv for \(\hbox {O}_{3}\), CO and \(\hbox {CH}_{4}\), respectively. The analysis of diurnal variation of \(\hbox {O}_{3}\) based on observations and the simulations from Weather Research and Forecasting coupled with Chemistry (WRF-Chem) at a stationary point over the BoB did not show a net photochemical build up during daytime. Satellite retrievals show limitations in capturing \(\hbox {CH}_{4}\) variations as measured by in situ sample analysis highlighting the need of more shipborne in situ measurements of trace gases over this region during monsoon. 相似文献
19.
Neha Singh Ravi Prakash Singh Saumitra Mukherjee Kyle McDonald K. J. Reddy 《Environmental Earth Sciences》2014,72(1):111-118
A study was conducted to understand the hydrogeological processes dominating in the North 24 Parganas and South 24 Parganas based on representative 39 groundwater samples collected from selected area. The abundance of major ions was in the order of Ca2+ > Na+ > Mg2+ > K+ > Fe2+ for cations and HCO3 ? > PO4 3? > Cl? > SO4 2? > NO3 ? for anions. Piper trilinear diagram was plotted to understand the hydrochemical facies. Most of the samples are of Ca-HCO3 type. Based on conventional graphical plots for (Ca + Mg) vs. (SO4 + HCO3) and (Na + K) vs. Cl, it is interpreted that silicate weathering and ion exchange are the dominant processes within the study area. Previous studies have reported quartz, feldspar, illite, and chlorite clay minerals as the major mineral components obtained by the XRD analysis of sediments. Mineralogical investigations by SEM and EDX of aquifer materials have shown the occurrence of arsenic as coating on mineral grains in the silty clay as well as in the sandy layers. Excessive withdrawal of groundwater for irrigation and drinking purposes is responsible for fluctuation of the water table in the West Bengal. Aeration beneath the ground surface caused by fluctuation of the water table may lead to the formation of carbonic acid. Carbonic acid is responsible for the weathering of silicate minerals, and due to the formation of clay as a product of weathering, ion exchange also dominates in the area. These hydrogeological processes may be responsible for the release of arsenic into the groundwater of the study area, which is a part of North 24 Parganas and South 24 Parganas. 相似文献
20.
Bandana Baruah Prakash Kumar M. Ravi Kumar 《Journal of the Geological Society of India》2016,88(1):13-21
We compare the P-, S- and Lg- spectra of the 11th May, 1998 Pokhran underground nuclear explosion (NE) with those of an earthquake (EQ) of comparable magnitude that occurred in its vicinity (~100 km west) on 9th April, 2009, utilizing the waveforms recorded by a Global Seismograph Network station at Nilore (NIL), Pakistan. The contiguous occurrence of these events and the similarity of the travel paths provided a good opportunity to discriminate the nature of the sources. Our results suggest that the Pn/Lg and Pn/Sn amplitude ratios of the explosion and earthquake waveforms exhibit distinct differences in the higher frequency window. Further, since the P-phases have high signal to noise ratio compared to their S counterparts, we utilize their spectra to derive the source parameters of the NE and EQ sources. Our results show that the seismic moment, corner frequency and source dimension of the explosion are ~1.58X1017 Nm, 1.18 Hz and ~0.793 km respectively. The moment magnitude (MW) and surface wave magnitude (MS) for the nuclear explosion are estimated to be ~5.4 and ~3.57 respectively. The values of MW (5.3) and MS (4.3) obtained by us for the earthquake are consistent with the estimates in the Harvard catalog and earlier published results. The estimate of MW for the nuclear explosion was hitherto not available. Lastly, we estimate the yield of the NE to be ~50 kt from the surface wave magnitude and discuss the various limitations related to its estimation. 相似文献