首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   4篇
  国内免费   2篇
大气科学   7篇
地球物理   7篇
地质学   24篇
海洋学   1篇
自然地理   1篇
  2022年   2篇
  2020年   5篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
11.
Thermotectonic history of the Trans-Himalayan Ladakh Batholith in the Kargil area, N. W. India, is inferred from new age data obtained here in conjunction with previously published ages. Fission-track (FT) ages on apatite fall around 20±2 Ma recording cooling through temperatures of ∼100°C and indicating an unroofing of 4 km of the Ladakh Range since the Early Miocene. Coexisting apatite and zircon FT ages from two samples in Kargil show the rocks to have cooled at an average rate of 5–6°C/Ma in the past 40 Ma. Zircon FT ages together with mica K−Ar cooling ages from the Ladakh Batholith cluster around 40–50 Ma, probably indicating an Eocene phase of uplift and erosion that affected the bulk of the batholith after the continental collision of India with the Ladakh arc at 55 Ma. Components of the granitoids in Upper Eocene-Lower Oligocene sediments of the Indus Molasse in Ladakh supports this idea. Three hornblende K−Ar ages of 90 Ma, 55 Ma, and 35 Ma are also reported; these distinctly different ages probably reflect cooling through 500–550°C of three phases of I-type plutonism in Ladakh also evidenced by other available radiometric data: 102 Ma (mid-Cretaceous), 60 Ma (Palaeocene), and 40 Ma (Late Eocene); the last phase being localised sheet injections. The geodynamic implications of the age data for the India-Asia collision are discussed.  相似文献   
12.
13.
A structural cross-section constructed across the Zagros Fold-Thrust Belt covering the Abadan Plain, Dezful Embayment, and Izeh Zone applied 2D and 3D seismic data, well data, surface and subsurface geological maps, satellite images and field reconnaissance. Besides validation and modification of the cross-section, restoration allows better understanding of the geology, structural style and stratigraphy of the Zagros basin. In the area of interest, the Hormuz basal decollement and the Gachsaran detachment play the most significant roles in the structural style and deformation of the Zagros belt. More complexity is associated with interval decollements such as Triassic evaporites, Albian shales and Eocene marls. A variety of lithotectonic units and detachment surfaces confound any estimation of shortening, which generally decreases with increasing depth. Deformation completely differs in the Abadan Plain, Dezful Embayment and Izeh Zone because of different sedimentation histories and tectonic evolution; gentle and young structures can be interpreted as pre-collisional structures of the Dezful Embayment before the Late Cretaceous. After the Late Cretaceous, the Mountain Front Fault is the main control of sedimentation and deformation in the Zagros Basin, and this completely characterizes fold style and geometry within the Dezful Embayment and the Izeh Zone.  相似文献   
14.
Accurate estimation of low flow as a criterion for different objectives in water resource management, including drought is of crucial importance. Despite the complex nature of water deficits, univariate methods have often been used to analyze the frequency of low flows. In this study, low flows of Dez River basin were examined during period of 1956–2012 using copula functions at the upstream of headbranches’ junction. For this purpose, at first 7-day series of low flow was extracted at the studied stations, then their homogeneity was examined by Mann–Kendall test. The results indicated that 7-day low flow series of Dez basin were homogenous. In the next stage, 12 different distribution functions were fitted onto the low flow data. Finally, for Sepid Dasht Sezar (SDS), Sepid Dasht Zaz (SDZ), and Tang Panj Bakhtiyari (TPB) stations, logistic distribution had the best fit, while for Tang Panj Sezar (TPS) station, GEV distribution enjoyed the best fit. After specifying the best fitted marginal distributions, seven different copula functions including Ali–Mikhail–Haq (AMH), Frank, Clayton, Galambos, Farlie–Gumbel–Morgenstern (FGM), Gumbel–Hougaard (GH), and Plackett were used for bivariate frequency analysis of the 7-day low flow series. The results revealed that the GH copula had the best fitness on paired data of SDS and SDZ stations. For TPS and TPB stations, Frank copula has had the best correspondence with empirical copula values. Next, joint and conditional return periods were calculated for the low flow series at the upstream of branches’ junction. The results of this study indicated that the risk of incidence of severe drought is higher in upstream stations (SDZ and SDS) when compared with downstream stations (TPB and TPS) in Dez basin. Generally, application of multivariate analysis allows researchers to investigate hydrological events with a more comprehensive view by considering the simultaneous effect of the influencing factors on the phenomenon of interest. It also enables them to evaluate different combinations of required scenarios for integrated management of basin and planning to cope with the damages caused by natural phenomena.  相似文献   
15.
Investigation of the precipitation phenomenon as one of the most important meteorological factors directly affecting access to water resources is of paramount importance. In this study, the precipitation concentration index (PCI) was calculated using annual precipitation data from 34 synoptic stations of Iran over a 50-year period (1961–2010). The trend of precipitation and the PCI index were analyzed using the Mann–Kendall test after removing the effect of autocorrelation coefficients in annual and seasonal time scales. The results of zoning the studied index at annual time scale revealed that precipitation concentration follows a similar trend within two 25-year subscales. Furthermore, the PCI index in central and southern regions of the country, including the stations of Kerman, Bandarabbas, Yazd, Zahedan, Shahrekord, Birjand, Bushehr, Ahwaz, and Esfahan indicates a strong irregularity and high concentration in atmospheric precipitations. In annual time scale, none of the studied stations, had shown regular concentration (PCI < 10). Analyzing the trend of PCI index during the period of 1961–2010 witnessed an insignificant increasing (decreasing) trend in 16 (15) stations for winter season, respectively, while it faced a significant negative trend in Dezful, Saghez, and Hamedan stations. Similarly, in spring, Kerman and Ramsar stations exhibited a significant increasing trend in the PCI index, implying significant development of precipitation concentration irregularities in these two stations. In summer, Gorgan station showed a strong and significant irregularity for the PCI index and in autumn, Tabriz and Zahedan (Babolsar) stations experienced a significant increasing (decreasing) trend in the PCI index. At the annual time scale, 50 % of stations experienced an increasing trend in the PCI index. Investigating the changes in the precipitation trend also revealed that in annual time scale, about 58 % of the stations had a decreasing trend. In winter, which is the rainiest season in Iran, about 64 % of stations experienced a decreasing trend in precipitation that caused an increasing trend in PCI index. Comparing the spatial distribution of PCI index within two 25 years sub-periods indicated that the PCI index of the second sub-period increased in the spring time scale that means irregularity of precipitation distribution has been increased. But in the other seasons any significant variations were not observed. Also in the annual time scale the PCI index increased in the second sub-period because of the increasing trend of precipitation.  相似文献   
16.
Modeling flood event characteristics using D-vine structures   总被引:1,自引:0,他引:1  
The authors investigate the use of drawable (D-)vine structures to model the dependences existing among the main characteristics of a flood event, i.e., flood volume, flood peak, duration, and peak time. Firstly, different three- and four-dimensional probability distributions were built considering all the permutations of the conditioning variables. The Frank copula was used to model the dependence of each pair of variables. Then, the appropriate D-vine structures were selected using information criteria and a goodness-of-fit test. The influence of varying the data length on the selected D-vine structure was also investigated. Finally, flood event characteristics were simulated using the four-dimensional D-vine structure.  相似文献   
17.
18.
This paper describes the updated stratigraphy, structural framework and evolution, and hydrocarbon prospectivity of the Paleozoic, Mesozoic and Cenozoic basins of Yemen, depicted also on regional stratigraphic charts. The Paleozoic basins include (1) the Rub’ Al-Khali basin (southern flanks), bounded to the south by the Hadramawt arch (oriented approximately W–E) towards which the Paleozoic and Mesozoic sediments pinch out; (2) the San’a basin, encompassing Paleozoic through Upper Jurassic sediments; and (3) the southern offshore Suqatra (island) basin filled with Permo-Triassic sediments correlatable with that of the Karoo rift in Africa. The Mesozoic rift basins formed due to the breakup of Gondwana and separation of India/Madagascar from Africa–Arabia during the Late Jurassic/Early Cretaceous. The five Mesozoic sedimentary rift basins reflect in their orientation an inheritance from deep-seated, reactivated NW–SE trending Infracambrian Najd fault system. These basins formed sequentially from west to east–southeast, sub-parallel with rift orientations—NNW–SSE for the Siham-Ad-Dali’ basin in the west, NW–SE for the Sab’atayn and Balhaf basins and WNW–ESE for the Say’un-Masilah basin in the centre, and almost E–W for the Jiza’–Qamar basin located in the east of Yemen. The Sab’atayn and Say’un–Masilah basins are the only ones producing oil and gas so far. Petroleum reservoirs in both basins have been charged from Upper Jurassic Madbi shale. The main reservoirs in the Sab’atayn basin include sandstone units in the Sab’atayn Formation (Tithonian), the turbiditic sandstones of the Lam Member (Tithonian) and the Proterozoic fractured basement (upthrown fault block), while the main reservoirs in the Say’un–Masilah basin are sandstones of the Qishn Clastics Member (Hauterivian/Barremian) and the Ghayl Member (Berriasian/Valanginian), and Proterozoic fractured basement. The Cenozoic rift basins are related to the separation of Arabia from Africa by the opening of the Red Sea to the west and the Gulf of Aden to the south of Yemen during the Oligocene-Recent. These basins are filled with up to 3,000 m of sediments showing both lateral and vertical facies changes. The Cenozoic rift basins along the Gulf of Aden include the Mukalla–Sayhut, the Hawrah–Ahwar and the Aden–Abyan basins (all trending ENE–WSW), and have both offshore and onshore sectors as extensional faulting and regional subsidence affected the southern margin of Yemen episodically. Seafloor spreading in the Gulf of Aden dates back to the Early Miocene. Many of the offshore wells drilled in the Mukalla–Sayhut basin have encountered oil shows in the Cretaceous through Neogene layers. Sub-commercial discovery was identified in Sharmah-1 well in the fractured Middle Eocene limestone of the Habshiyah Formation. The Tihamah basin along the NNW–SSE trending Red Sea commenced in Late Oligocene, with oceanic crust formation in the earliest Pliocene. The Late Miocene stratigraphy of the Red Sea offshore Yemen is dominated by salt deformation. Oil and gas seeps are found in the Tihamah basin including the As-Salif peninsula and the onshore Tihamah plain; and oil and gas shows encountered in several onshore and offshore wells indicate the presence of proven source rocks in this basin.  相似文献   
19.
A collection of data obtained from analytical methods in geochemistry along with the reservoir engineering and geologic data were used to investigate the reservoir continuity in the Cretaceous Fahliyan, Gadavan, Kazhdumi and Sarvak reservoirs of the super-giant Azadegan oilfield, SW Iran. The geochemical data indicate that the oil samples, with medium to high level of thermal maturity, have been generated from the anoxic marine marl/carbonate source rock(s). The Sargelu(Jurassic) and Garau(Creta...  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号