首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5207篇
  免费   544篇
  国内免费   156篇
测绘学   235篇
大气科学   588篇
地球物理   1933篇
地质学   2117篇
海洋学   267篇
天文学   337篇
综合类   187篇
自然地理   243篇
  2023年   3篇
  2022年   6篇
  2021年   19篇
  2020年   5篇
  2019年   10篇
  2018年   433篇
  2017年   373篇
  2016年   249篇
  2015年   149篇
  2014年   112篇
  2013年   114篇
  2012年   648篇
  2011年   420篇
  2010年   114篇
  2009年   130篇
  2008年   118篇
  2007年   110篇
  2006年   124篇
  2005年   832篇
  2004年   871篇
  2003年   652篇
  2002年   173篇
  2001年   69篇
  2000年   43篇
  1999年   14篇
  1998年   5篇
  1997年   17篇
  1996年   10篇
  1991年   10篇
  1990年   9篇
  1989年   5篇
  1987年   4篇
  1980年   3篇
  1976年   4篇
  1975年   5篇
  1973年   3篇
  1969年   2篇
  1968年   2篇
  1966年   1篇
  1965年   4篇
  1963年   2篇
  1962年   1篇
  1961年   2篇
  1959年   3篇
  1956年   1篇
  1955年   2篇
  1954年   2篇
  1951年   3篇
  1948年   2篇
  1925年   1篇
排序方式: 共有5907条查询结果,搜索用时 476 毫秒
341.
The conditions under which rear-arc magmas are generated were estimated using primary basalts from the Sannome-gata volcano, located in the rear of the NE Japan arc. Scoriae from the volcano occur with abundant crustal and mantle xenoliths, suggesting that the magma ascended rapidly from the upper mantle. The scoriae show significant variations in their whole-rock compositions (7.9–11.1 wt% MgO). High-MgO scoriae (MgO > ~9.5 wt%) have mostly homogeneous 87Sr/86Sr ratios (0.70318–0.70320), whereas low-MgO scoriae (MgO < ~9 wt%) have higher 87Sr/86Sr ratios (>0.70327); ratios tend to increase with decreasing MgO content. The high-MgO scoriae are aphyric, containing ~5 vol% olivine microphenocrysts with Mg# [100 × Mg/(Mg + Fe2+)] of up to 90. In contrast, the low-MgO scoriae have crustal xenocrysts of plagioclase, alkali feldspar, and quartz, and the mineralogic modes correlate negatively with whole-rock MgO content. On the basis of these observations, it is inferred that the high-MgO scoriae represent primary or near-primary melts, while the low-MgO scoriae underwent considerable interaction with the crust. Using thermodynamic analysis of the observed petrological features of the high-MgO scoriae, the eruption temperature of the magmas was constrained to 1,160–1,220 °C. Given that the source mantle was depleted MORB-source mantle, the primary magma was plausibly generated by ~7 % melting of a garnet-bearing spinel peridotite; taking this into consideration, and considering the constraints of multi-component thermodynamics, we estimated that the primary Sannome-gata magma was generated in the source mantle with 0.5–0.6 wt% H2O at 1,220–1,230 °C and at ~1.8 GPa, and that the H2O content of the primary magma was 6–7 wt%. The rear-arc Sannome-gata magma was generated by a lower degree of melting of the mantle at greater depths and lower temperatures than the frontal-arc magma from the Iwate volcano, which was also estimated to be generated by ~15 % melting of the source mantle with 0.6–0.7 wt% H2O at ~1,250 °C and at ~1.3 GPa.  相似文献   
342.
The time scales and mechanics of gravitationally driven crystal settling and compaction is investigated through high temperature (1,280–1,500 °C) centrifuge-assisted experiments on a chromite-basalt melt system at 100–1,500g (0.5 GPa). Subsequently, the feasibility of this process for the formation of dense chromite cumulate layers in large layered mafic intrusions (LMIs) is assessed. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. The experimentally observed mechanical settling velocity of a suspension of ~24 vol% chromite is calculated to be about half (~0.53) of the Stokes settling velocity, with a sedimentation exponent n of 2.35 (3). Gravitational settling leads to an orthocumulate layer with a porosity of 0.52 (all porosities as fraction). Formation times for such a layer from a magma with initial chromite contents of 0.1–1 vol% are 140–3.5 days, equal to a growth rate of 0.007–0.3 m/day for grain sizes of 1–2 mm. More compacted chromite layers form with increasing centrifugation time and acceleration through chemical compaction: An increase of grain contact areas and grain sizes together with a decrease in porosity is best explained by pressure dissolution at grain contacts, reprecipitation and grain growth into the intergranular space and a concomitant expulsion of intergranular melt. The relation between the porosity in the cumulate pile and effective pressure integrated over time (Δρ · h · a · t) is best fit with a logarithmic function, in fact confirming that a (pressure) dissolution–reprecipitation process is the dominant mechanism of compaction. The experimentally derived equation allows calculating compaction times: 70–80 % chromite at the bottom of a 1-m-thick chromite layer are reached after 9–250 years, whereas equivalent compaction times are 0.2–0.9 years for olivine (both for 2 mm grain size). The experiments allow to determine the bulk viscosities of chromite and olivine cumulates to be of magnitude 109 Pa s, much lower than previously reported. As long as melt escape from the compacting cumulate remains homogeneous, fluidization does not play any role; however, channelized melt flow may lead to suspension and upward movement of cumulate crystals. In LMIs, chromitite layers are typically part of a sequence with layers of mafic minerals, compaction occurs under the additional weight of the overlying layers and can be achieved in a few years to decades.  相似文献   
343.
The Silver Creek caldera (southern Black Mountains, western Arizona) is the source of the 18.8 Ma, >700 km3 Peach Spring Tuff (PST) supereruption, the largest eruption generated in the Colorado River Extensional Corridor (CREC) of the southwestern United States. Within and immediately surrounding the caldera is a sequence of volcanics and intrusions ranging in age from ~19 to 17 Ma. These units offer a record of magmatic processes prior to, during, and immediately following the PST eruption. To investigate the thermal evolution of the magmatic center that produced the PST, we applied a combination of Ti-in-zircon thermometry, zircon saturation thermometry, and high-precision U–Pb CA–TIMS zircon dating to representative pre- and post-supereruption volcanic and intrusive units from the caldera and its environs. Similar to intracaldera PST zircons, zircons from a pre-PST trachytic lava (19 Ma) and a post-PST caldera intrusion (18.8 Ma) yield exceptionally high-Ti concentrations (most >20 ppm, some up to nearly 60 ppm), corresponding to calculated temperatures that exceed 900 °C. In these units, Ti-in-zircon temperatures typically surpass zircon saturation temperatures (ZSTs), suggesting the entrainment of zircon that had grown in hotter environments within the magmatic system. Titanium concentrations in younger volcanic and intrusive units (~18.7–17.5 Ma) decline through time, corresponding to an average cooling rate of 10?3.5 °C/year. The ~200 k.y. thermal peak evident at Silver Creek caldera is spatially limited: elsewhere in the Miocene record of the northern CREC, Ti-in-zircon concentrations and ZSTs are much lower, suggesting that felsic magmas were generally substantially cooler.  相似文献   
344.
The Klyuchevskoy group of volcanoes in the Kamchatka arc erupts compositionally diverse magmas (high-Mg basalts to dacites) over small spatial scales. New high-precision Pb isotope data from modern juvenile (1956–present) erupted products and hosted enclaves and xenoliths from Bezymianny volcano reveal that Bezymianny and Klyuchevskoy volcanoes, separated by only 9 km, undergo varying degrees of crustal processing through independent crustal columns. Lead isotope compositions of Klyuchevskoy basalts–basaltic andesites are more radiogenic than Bezymianny andesites (208Pb/204Pb = 37.850–37.903, 207Pb/204Pb = 15.468–15.480, and 206Pb/204Pb = 18.249–18.278 at Bezymianny; 208Pb/204Pb = 37.907–37.949, 207Pb/204Pb = 15.478–15.487, and 206Pb/204Pb = 18.289–18.305 at Klyuchevskoy). A mid-crustal xenolith with a crystallization pressure of 5.2 ± 0.6 kbars inferred from two-pyroxene geobarometry and basaltic andesite enclaves from Bezymianny record less radiogenic Pb isotope compositions than their host magmas. Hence, assimilation of such lithologies in the middle or lower crust can explain the Pb isotope data in Bezymianny andesites, although a component of magma mixing with less radiogenic mafic recharge magmas and possible mantle heterogeneity cannot be excluded. Lead isotope compositions for the Klyuchevskoy Group are less radiogenic than other arc segments (Karymsky—Eastern Volcanic Zone; Shiveluch—Northern Central Kamchatka Depression), which indicate increased lower-crustal assimilation beneath the Klyuchevskoy Group. Decadal timescale Pb isotope variations at Klyuchevskoy demonstrate rapid changes in the magnitude of assimilation at a volcanic center. Lead isotope data coupled with trace element data reflect the influence of crustal processes on magma compositions even in thin mafic volcanic arcs.  相似文献   
345.
The weathering of mantle peridotite tectonically exposed to the atmosphere leads commonly to natural carbonation processes. Extensive cryptocrystalline magnesite veins and stock-work are widespread in the serpentinite sole of the New Caledonia ophiolite. Silica is systematically associated with magnesite. It is commonly admitted that Mg and Si are released during the laterization of overlying peridotites. Thus, the occurrence of these veins is generally attributed to a per descensum mechanism that involves the infiltration of meteoric waters enriched in dissolved atmospheric CO2. In this study, we investigate serpentinite carbonation processes, and related silicification, based on a detailed petrographic and crystal chemical study of serpentinites. The relationships between serpentine and alteration products are described using an original method for the analysis of micro-X-ray fluorescence images performed at the centimeter scale. Our investigations highlight a carbonation mechanism, together with precipitation of amorphous silica and sepiolite, based on a dissolution–precipitation process. In contrast with the per descensum Mg/Si-enrichment model that is mainly concentrated in rock fractures, dissolution–precipitation process is much more pervasive. Thus, although the texture of rocks remains relatively preserved, this process extends more widely into the rock and may represent a major part of total carbonation of the ophiolite.  相似文献   
346.
Mafic basaltic-andesitic volcanic rocks from the Andean Southern Volcanic Zone (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr–Nd-high-precision Pb isotope data from the Quaternary arc volcanic centres of Maipo (NSVZ) and Infernillo and Laguna del Maule (TSVZ) are argued to reflect mainly their mantle source and its melting. For the C-T-NSVZ, we identify two types of source enrichment: one, represented by Antuco in CSVZ, but also present northward along the arc, was dominated by fluids which enriched a pre-metasomatic South Atlantic depleted MORB mantle type asthenosphere. The second enrichment was by melts having the characteristics of upper continental crust (UCC), distinctly different from Chile trench sediments. We suggest that granitic rocks entered the source mantle by means of subduction erosion in response to the northward increasingly strong coupling of the converging plates. Both types of enrichment had the same Pb isotope composition in the TSVZ with no significant component derived from the subducting oceanic crust. Pb–Sr–Nd isotopes indicate a major crustal compositional change at the southern end of the NSVZ. Modelling suggests addition of around 2 % UCC for Infernillo and 5 % for Maipo.  相似文献   
347.
Amphibole is widely employed to calculate crystallization temperature and pressure, although its potential as a geobarometer has always been debated. Recently, Ridolfi et al. (Contrib Mineral Petrol 160:45–66, 2010) and Ridolfi and Renzulli (Contrib Mineral Petrol 163:877–895, 2012) have presented calibrations for calculating temperature, pressure, fO2, melt H2O, and melt major and minor oxide composition from amphibole with a large compositional range. Using their calibrations, we have (i) calculated crystallization conditions for amphibole from eleven published experimental studies to examine the problems and the potential of the new calibrations; and (ii) calculated crystallization conditions for amphibole from basaltic–andesitic pyroclasts erupted during the paroxysmal 2010 eruption of Mount Merapi in Java, Indonesia, to infer pre-eruptive conditions. Our comparison of experimental and calculated values shows that calculated crystallization temperatures are reasonable estimates. Calculated fO2 and melt SiO2 content yields potentially useful estimates at moderately reduced to moderately oxidized conditions and intermediate to felsic melt compositions. However, calculated crystallization pressure and melt H2O content are untenable estimates that largely reflect compositional variation in the crystallizing magmas and crystallization temperature and not the calculated parameters. Amphibole from Merapi’s pyroclasts yields calculated conditions of ~200–800 MPa, ~900–1,050 °C, ~NNO + 0.3–NNO + 1.1, ~3.7–7.2 wt% melt H2O, and ~58–71 wt% melt SiO2. We interpret the variations in calculated temperature, fO2, and melt SiO2 content as reasonable estimates, but conclude that the large calculated pressure variation for amphibole from Merapi and many other arc volcanoes is evidence for thorough mixing of mafic to felsic magmas and not necessarily evidence for crystallization over a large depth range. In contrast, bimodal pressure estimates obtained for other arc magmas reflect amphibole crystallization from mafic and more evolved magmas, respectively, and should not necessarily be taken as evidence for crystallization in two reservoirs at variable depth.  相似文献   
348.
Mangakino, the oldest rhyolitic caldera centre delineated in the Taupo Volcanic Zone of New Zealand, generated two very large (super-sized) ignimbrite eruptions, the 1.21 ± 0.04 Ma >500 km3 Ongatiti and ~1.0 Ma ~1,200 km3 Kidnappers events, the latter of which was followed after a short period of erosion by the ~200 km3 Rocky Hill eruption. We present U/Pb ages and trace-element analyses on zircons from pumice clasts from these three eruptions by Secondary Ion Mass Spectrometry (SIMS) using SHRIMP-RG instruments to illustrate the evolution of the respective magmatic systems. U–Pb age spectra from the Ongatiti imply growth of the magmatic system over ~250 kyr, with a peak of crystallisation around 1.32 Ma, ~100 kyr prior to eruption. The zircons are inferred to have then remained stable in a mush with little crystallisation and/or dissolution before later rejuvenation of the system at the lead-in to eruption. The paired Kidnappers and Rocky Hill eruptions have U–Pb zircon ages and geochemical signatures that suggest they were products of a common system grown over ~200 kyr. The Kidnappers and Rocky Hill samples show similar weakly bimodal age spectra, with peaks at 1.1 and 1.0 Ma, suggesting that an inherited antecrystic population was augmented by crystals grown at ages within uncertainty of the eruption age. In the Kidnappers, this younger age peak is dominantly seen in needle-shaped low U grains with aspect ratios of up to 18. In all three deposits, zircon cores show larger ranges and higher absolute concentrations of trace elements than zircon rims, consistent with zircon crystallisation from evolving melts undergoing crystal fractionation involving plagioclase and amphibole. Abundances and ratios of many trace elements frequently show variations between different sectors within single grains, even where there is no visible sector zoning in cathodoluminescence (CL) imaging. Substitution mechanisms, as reflected in the molar (Sc + Y + REE3+)/P ratio, differ in the same growth zone between the sides (along a-axis and b-axis: values approaching 1.0) and tips (c-axis: values between 1.5 and 5.0) of single crystals. These observations have implications for the use of zircons for tracking magmatic processes, particularly in techniques where CL zonation within crystals is not assessed and small analytical spot sizes cannot be achieved. These observations also limit applicability of the widely used Ti-in-zircon thermometer. The age spectra for the Ongatiti and Kidnappers/Rocky Hill samples indicate that both magmatic systems were newly built in the time-breaks after respective previous large eruptions from Mangakino. Trace element variations defining three-component mixing suggest that zircons, sourced from multiple melts, contributed to the population in each system.  相似文献   
349.
The ~1,000 km3 Carpenter Ridge Tuff (CRT), erupted at 27.55 Ma during the mid-tertiary ignimbrite flare-up in the western USA, is among the largest known strongly zoned ash-flow tuffs. It consists primarily of densely welded crystal-poor rhyolite with a pronounced, highly evolved chemical signature (high Rb/Sr, low Ba, Zr, Eu), but thickly ponded intracaldera CRT is capped by a more crystal-rich, less silicic facies. In the outflow ignimbrite, this upper zone is defined mainly by densely welded crystal-rich juvenile clasts of trachydacite composition, with higher Fe–Ti oxide temperatures, and is characterized by extremely high Ba (to 7,500 ppm), Zr, Sr, and positive Eu anomalies. Rare mafic clasts (51–53 wt% SiO2) with Ba contents to 4,000–5,000 ppm and positive Eu anomalies are also present. Much of the major and trace-element variations in the CRT juvenile clasts can be reproduced via in situ differentiation by interstitial melt extraction from a crystal-rich, upper-crustal mush zone, with the trachydacite, crystal-rich clasts representing the remobilized crystal cumulate left behind by the melt extraction process. Late recharge events, represented by the rare mafic clasts and high-Al amphiboles in some samples, mixed in with parts of the crystal cumulate and generated additional scatter in the whole-rock data. Recharge was important in thermally remobilizing the silicic crystal cumulate by partially melting the near-solidus phases, as supported by: (1) ubiquitous wormy/sieve textures and reverse zoning patterns in feldspars and biotites, (2) absence of quartz in this very silicic unit stored at depths of >4–5 km, and (3) heterogeneous melt compositions in the trachydacite fiamme and mafic clasts, particularly in Ba, indicating local enrichment of this element due mostly to sanidine and biotite melting. The injection of hot, juvenile magma into the upper-crustal cumulate also imparted the observed thermal gradient to the deposits and the mixing overprint that partly masks the in situ differentiation process. The CRT provides a particularly clear perspective on processes of in situ crystal-liquid separation into a lower crystal-rich zone and an upper eruptible cap, which appears common in incrementally built upper-crustal magma reservoirs of high-flux magmatic provinces.  相似文献   
350.
Vanadium occurs in multiple valence states in nature, whereas Nb is exclusively pentavalent. Both are compatible in rutile, but the relationship of V–Nb partitioning and dependence on oxygen fugacity (expressed as fO2) has not yet been systematically investigated. We acquired trace-element concentrations on rutile grains (n = 86) in nine eclogitic samples from the Dabie-Sulu orogenic belt by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) and combined them with published results in order to assess the direct and indirect effects of oxygen fugacity on the partitioning of V and Nb into rutile. A well-defined negative correlation between Nb (7–1,200 ppm) and V concentrations (50–3,200 ppm) was found, documenting a competitive relationship in the rutile crystal that does not appear to be controlled by bulk rock or mineral compositions. Based on the published relationship of RtDV and V valence with ?QFM, we suggest that the priority order of V incorporation into rutile is V4+ > V3+ > V5+. The inferred Nb–V competitive relationship in rutile from the Dabie-Sulu orogenic belt could be explained by decreasing fO2 due to dehydration reactions involving loss of oxidizing fluids during continental subduction: The increased proportion of V3+ (expressed as V3+/∑V) and attendant decrease in RtDV is suggested to lead to an increase in rutile lattice sites available for Nb5+. A similar effect may be observed under more oxidizing conditions. When V5+/∑V increases, RtDV shows a dramatic decline and Nb concentration increases considerably. This is possibly documented by rutile in highly metasomatized and oxidized MARID-type (MARID: mica–amphibole–rutile–ilmenite–diopside) mantle xenoliths from the Kaapvaal craton, which also show a negative V–Nb covariation. In addition, their Nb/Ta covaries with V concentrations: For V concentrations <1,250 ppm, Nb/Ta ranges between 35 and 45, whereas for V > 1,250 ppm, Nb/Ta is considerably lower (5–15). This relationship is mainly controlled by a change in Nb concentrations, suggesting that the indirect dependence of RtDNb on fO2, which is not mirrored in RtDTa, can exert considerable influence on rutile Nb–Ta fractionation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号