首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   11篇
  国内免费   1篇
测绘学   2篇
大气科学   7篇
地球物理   33篇
地质学   67篇
海洋学   17篇
天文学   33篇
自然地理   7篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   9篇
  2006年   13篇
  2005年   11篇
  2004年   5篇
  2003年   12篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1965年   1篇
排序方式: 共有166条查询结果,搜索用时 750 毫秒
11.
Lunar meteorite Northwest Africa 773 (herein referred to as NWA773) is a breccia composed predominantly of mafic volcanic components, including a prominent igneous clast lithology. The clast lithology is an olivine-gabbro cumulate, which, on the basis of mineral and bulk compositions, is a hypabyssal igneous rock related compositionally to volcanic components in the meteorite. The olivine-gabbro lithology exhibits cumulus textures and, in our largest section of it, includes some 48% olivine (Fo64 to Fo70, average Fo67), 27% pigeonite (En60Fs24Wo16 to En67Fs27Wo6), 11% augite (En50Fs17Wo33 to En47Fs13Wo40), 2% orthopyroxene (En70Fs26Wo4), 11% plagioclase (An80 to An94), and trace barian K-feldspar, ilmenite, Cr-spinel, RE-merrillite, troilite, and Fe-Ni metal. The Mg/Fe ratios of the mafic silicates indicate equilibration of Fe and Mg; however, the silicates retain compositional variations in minor and trace elements that are consistent with intercumulus crystallization. Accessory mineralogy reflects crystallization of late-stage residual melt. Both lithologies (breccia and olivine cumulate) of the meteorite have very-low-Ti (VLT) major-element compositions, but with an unusual trace-element signature compared to most lunar VLT volcanic compositions, i.e., relative enrichment in light REE and large-ion-lithophile elements, and greater depletion in Eu than almost all other known lunar volcanic rocks. The calculated composition of the melt that was in equilibrium with pyroxene and plagioclase of the cumulate lithology exhibits a KREEP-like REE pattern, but at lower concentrations. Melt of a composition calculated to have been in equilibrium with the cumulate assemblage, plus excess olivine, yields a major-element composition that is similar to known green volcanic glasses. One volcanic glass type from Apollo 14 in particular, green glass B, type 1, has a very low Ti concentration and REE characteristics, including extremely low Eu concentration, that make it a candidate parent melt for the olivine-gabbro cumulate. We infer an origin for the parent melt of NWA773 volcanic components by assimilation of a trace-element-rich partial or residual melt by a magnesian, VLT magma deep in the lunar crust or in the mantle prior to transportation to the near-surface, accumulation of olivine and pyroxene in a shallow chamber, eruption onto a volcanic surface, and incorporation of components into local, predominantly volcanic regolith, prior to impact mixing of the volcanic terrain and related hypabyssal setting, and ejection from the surface of the Moon. Volcanic components such as these probably occur in the Oceanus Procellarum region near the site of origin of the green volcanic glasses found in the Apollo 14 regolith.  相似文献   
12.
A specially designed 700-km2 grid survey, deploying 1000 regularly distributed low-frequency seismic recording systems, successfully investigated one of the most complex geologic environments of the Pannonian basin. The wide-angle signals penetrated through over 1000 m of multi-phase igneous lithology and recognized, for the first time, the underlying enigmatic Permian to Early Triassic basement rocks. Tomographic inversion of the first arrival grid data resulted in determination of an accurate three-dimensional (3-D) velocity field, to a depth of 4 km. The anomalous changes of the spatial velocity data outline the regional extent of the Late Miocene magmatic intrusions, which are covered by over 2000 m of Mid-Miocene to Pleistocene clastics. Complex relationship was found between the surface potential data and the intrusive bodies. This multi-faceted geophysical data analysis established a functional technique for mapping a subsurface with intricate acoustic and structural complexity.  相似文献   
13.
Magnesium‐rich spinel assemblages occur in the two lunar vitric breccia meteorites—Dhofar (Dho) 1528 and Graves Nunataks (GRA) 06157. Dho 1528 contains up to ~0.7 mm cumulate Mg‐rich spinel crystals associated with Mg‐rich olivine, Mg‐ and Al‐rich pyroxene, plagioclase, and rare cordierite. Using thermodynamic calculations of these mineral assemblages, we constrain equilibration depths and discuss an origin of these lithologies in the upper mantle of the Moon. In contrast, small, 10 to 20 μm spinel phenocryst assemblages in glassy melt rock clasts in Dho 1528 and GRA 06157 formed from the impact melting of Mg‐rich rocks. Some of these spinel phenocrysts match compositional constraints for spinel associated with “pink spinel anorthosites” inferred from remote sensing data. However, such spinel phenocrysts in meteorites and Apollo samples are typically associated with significant amounts of olivine ± pyroxene that exceed the compositional constraints for pink spinel anorthosites. We conclude that the remotely sensed “pink spinel anorthosites” have not been observed in the collections of lunar rocks. Moreover, we discuss impact‐excavation scenarios for the spinel‐bearing assemblages in Dhofar 1528 and compare the bulk rock composition of Dho 1528 to strikingly similar compositions of Luna 20 samples that contain ejecta from the Crisium impact basin.  相似文献   
14.
Oued Awlitis 001 is a highly feldspathic, moderately equilibrated, clast‐rich, poikilitic impact melt rock lunar meteorite that was recovered in 2014. Its poikilitic texture formed due to moderately slow cooling, which judging from textures of rocks in melt sheets of terrestrial impact structures, is observed in impact melt volumes at least 100 m thick. Such coherent impact melt volumes occur in lunar craters larger than ~50 km in diameter. The composition of Oued Awlitis 001 points toward a crustal origin distant from incompatible‐element‐rich regions. Comparison of the bulk composition of Oued Awlitis 001 with Lunar Prospector 5° γ‐ray spectrometer data indicates a limited region of matches on the lunar farside. After its initial formation in an impact crater larger than ~50 km in diameter, Oued Awlitis 001 was excavated from a depth greater than ~50 m. The cosmogenic nuclide inventory of Oued Awlitis 001 records ejection from the Moon 0.3 Ma ago from a depth of at least 4 m and little mass loss due to ablation during its passage through Earth's atmosphere. The terrestrial residence time must have been very short, probably less than a few hundred years; its exact determination was precluded by a high concentration of solar cosmic ray‐produced 14C. If the impact that excavated Oued Awlitis 001 also launched it, this event likely produced an impact crater >10 km in diameter. Using petrologic constraints and Lunar Reconnaissance Orbiter Camera and Diviner data, we test Giordano Bruno and Pierazzo as possible launch craters for Oued Awlitis 001.  相似文献   
15.
The Red River shear zone (RRSZ) is a major left‐lateral strike‐slip shear zone, containing a ductilely deformed metamorphic core bounded by brittle strike‐slip and normal faults, which stretches for >1000 km from Tibet through Yunnan and North Vietnam to the South China Sea. The RRSZ exposes four high‐grade metamorphic core complexes along its length. Various lithologies from the southernmost core complex, the Day Nui Con Voi (DNCV), North Vietnam, provide new constraints on the tectonic and metamorphic evolution of this region prior to and following the initial India–Asia collision. Analysis of a weakly deformed anatectic paragneiss using PT pseudosections constructed in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNCKFMASHTO) system provides prograde, peak and retrograde metamorphic conditions, and in situ U–Th–Pb geochronology of metamorphic monazite yields texturally controlled age constraints. Tertiary metamorphism and deformation, overprinting earlier Triassic metamorphism associated with the Indosinian orogeny and possible Cretaceous metamorphism, are characterized by peak metamorphic conditions of ~805 °C and ~8.5 kbar between c. 38 and 34 Ma. Exhumation occurred along a steep retrograde P–T path with final melt crystallizing at the solidus at ≥~5.5 kbar at ~790 °C. Further exhumation at ~640–700 °C and ~4–5 kbar at c. 31 Ma occurred at subsolidus conditions. U–Pb geochronological analysis of monazite from a strongly deformed pre‐kinematic granite dyke from the flank of the DNCV provides further evidence for exhumation at this time. Magmatic grains suggest initial emplacement at 66.0 ± 1.0 Ma prior to the India–Asia collision, whereas grains with metamorphic characteristics indicate later growth at 30.6 ± 0.4 Ma. Monazite grains from a cross‐cutting post‐kinematic dyke within the core of the DNCV antiform provide a minimum age constraint of 25.2 ± 1.4 Ma for the termination of fabric development. A separate and significant episode of monazite growth at c. 83–69 Ma is suggested to be the result of fluid‐assisted recrystallization following the emplacement of magmatic units.  相似文献   
16.
Statistical distribution models of multi-site binding equilibria have potential applicability in the study of acid-base and metal complexation chemistry of humic substances in soils, sediments, and natural waters. A mathematical derivation is presented for the general continuous model for the case of proton binding; computational methods are described for fitting numerically the parameters in such models. Among models considered are those based on nontruncated, truncated, and bimodal (mixed) distributions. Specific emphasis is placed on Gaussian distribution models.  相似文献   
17.
The compilation and major element composition of the “North American shale composite” (NASC) are reported for the first time, along with redeterminations for the REE and selected other elements by modern, high precision analytical methods. The NASC is not strictly of North American origin; 5 of the constituent samples are from Africa and Antarctica, and 15 are from unspecified locations. The major element composition of the NASC compares quite closely with other average shale compositions. New analyses of the NASC document that significant portions of the REE and some other trace elements are contained in minor phases (zircon and possibly other minerals) and that their uneven distribution in the NASC powder appears to have resulted in heterogeneity among analyzed aliquants. The results of this study show that the REE distributions of detrital sediments can be dependent to some extent on their minor mineral assemblages and the sedimentological factors that control these assemblages. Consequently, caution should be exercised in the interpretation of the REE distributions of sediment samples as they may be variable and biased relative to average REE distribution of the crustal rocks supplying detritus. These effects appear to be largely averaged out in sediment composites, with the result that their REE distributions are more likely to be representative of their provenances.  相似文献   
18.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   
19.
U–Pb isotopic data from the northern Monashee complex, one of the deepest structural exposures in the southern Canadian Cordillera, indicate that the age of metamorphism varies according to structural position in a 6 km thick section. This metamorphism resulted in an unusual sequence in which rocks with the lowest-grade mineral assemblage (kyanite–sillimanite–staurolite–muscovite) are underlain and overlain by higher-grade rocks. Xenotime and monazite U–Pb dates vary progressively from 64 Ma in the structurally highest rocks to 49 Ma in the deepest rocks. Discordant U–Pb ages from Proterozoic and Cretaceous monazite and titanite are used to interpret the thermal significance of the early Tertiary dates. The discordant analyses define linear arrays with lower intercepts that broadly overlap with early Tertiary, and the amount of discordance varies with structural level; it is least in the deeper rocks and greatest in higher rocks. Electron microprobe work showed that the monazite discordance in the deeper rocks resulted from Tertiary mineral overgrowth and recrystallization rather than Pb diffusion. We use previous studies of Pb diffusion and the fact that Proterozoic monazite and titanite suffered only negligible to moderate amounts of diffusive Pb loss to contend that elevated temperatures (c. 600–650 °C are inferred from pelitic mineral assemblages) existed in the deeper rocks for a short duration, perhaps a few million years. The downwards younging 64–49 Ma U–Pb dates are interpreted as closely reflecting xenotime and monazite growth ages rather than cooling ages or substantially reset ages based on the lack of Pb diffusion in monazite and the previously obtained 40Ar/39Ar data which suggest that rapid cooling occurred immediately after the U–Pb dates. In addition, growth ages are interpreted as thermal peak ages based on U–Pb dates from coeval kyanite-bearing leucosomes, the consistent nature of the U–Pb dates throughout the study area, and petrographic relationships which suggest that monazite grew before or during development of the syn-metamorphic foliation. These interpretations lead us to conclude that metamorphism was diachronous according to structural level, with higher rocks attaining peak temperatures and cooling rapidly while deeper rocks were heating towards a thermal peak that was attained a few million years later. This thermal scenario requires that higher rocks cannot have been the heat source for the deeper metamorphism, as was previously proposed.  相似文献   
20.
In many magnetized, dilute astrophysical plasmas, thermal conduction occurs almost exclusively parallel to magnetic field lines. In this case, the usual stability criterion for convective stability, the Schwarzschild criterion, which depends on entropy gradients, is modified. In the magnetized long mean free path regime, instability occurs for small wavenumbers when (∂ P/∂z) (∂ ln T/∂ z) > 0, which we refer to as the Balbus criterion. We refer to the convective-type instability that results as the magnetothermal instability (MTI). We use the equations of MHD with anisotropic electron heat conduction to numerically simulate the linear growth and nonlinear saturation of the MTI in plane-parallel atmospheres that are unstable according to the Balbus criterion. The linear growth rates measured from the simulations are in excellent agreement with the weak field dispersion relation. The addition of isotropic conduction, e.g. radiation, or strong magnetic fields can damp the growth of the MTI and affect the nonlinear regime. The instability saturates when the atmosphere becomes isothermal as the source of free energy is exhausted. By maintaining a fixed temperature difference between the top and bottom boundaries of the simulation domain, sustained convective turbulence can be driven. MTI-stable layers introduced by isotropic conduction are used to prevent the formation of unresolved, thermal boundary layers. We find that the largest component of the time-averaged heat flux is due to advective motions as opposed to the actual thermal conduction itself. Finally, we explore the implications of this instability for a variety of astrophysical systems, such as neutron stars, the hot intracluster medium of galaxy clusters, and the structure of radiatively inefficient accretion flows. J. M. Stone: Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号