首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   11篇
  国内免费   1篇
测绘学   2篇
大气科学   3篇
地球物理   31篇
地质学   51篇
海洋学   4篇
天文学   32篇
自然地理   8篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   6篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   12篇
  2005年   6篇
  2004年   4篇
  2003年   7篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
81.
The Pacific Northwest region of North America is a site of very complex tectonomagmatic activity. This activity is due to subduction of the Pacific plate, the associated Cascade chain of volcanoes, micro-plate interactions, and mantle plume activity to the east of the plate margin that produced the Yellowstone hotspot track along the Eastern Snake River Plain (ESRP). A number of recent geophysical and geological studies have produced new results that have drawn attention to the complex tectonic setting of the region east of the Cascade Range, and its tectonic evolution is the subject of considerable scientific interest and debate. Numerous seismic studies have specifically focused on the crustal and upper mantle structure of the ESRP and Yellowstone area. However, crustal-scale studies of the Western Snake River Plain (WSRP) are limited. We undertook an integrated analysis of new and existing geophysical data and geologic constraints to study the crustal structure of the WSRP and generated two-dimensional crustal models across it. We observed both differences and similarities in the structural and tectonic evolution of the eastern and western arms of the SRP based on our integrated analysis. From a broader perspective based on recent geological and geophysical studies in the surrounding region, the intersection of the two arms of the SRP emerges as a major element of a complex tectonic intersection that includes the High Lava Plains of eastern Oregon, the Northern Nevada rift, a southwestern extension of the ESRP into northern Nevada, as well as, faulting and volcanism extending north-westward to connect with the Columbia River basalt plateau region. Thus, the goal of this study is to advance our understanding of the tectonomagmatic evolution of the region and to encourage further studies in the region.  相似文献   
82.
Abstract

We seek to document and explain the lifecycle of the warm Sea Surface Temperature (SST) anomaly that intensified and weakened off the west coast of the United States to peak anomalies of 4°C during April‐June 1997. We use remotely sensed observational data and model analyses to compute an energy budget for the warm anomaly. The bulk of the anomalous warming was confined to the top 50 m of ocean and occurred during May. The immediate cause for the warming was twofold: latent heat fluxes decreased in magnitude as a result of both lower wind speeds and positive moisture anomalies, while the net radiative flux into the ocean increased as a result of lower than normal fractional cloud coverage. During June, the wind speed strengthened and became northerly, resulting in larger than normal latent and sensible heat fluxes that weakened the SST anomaly. Examination of the National Centers for Environmental Prediction (NCEP) 1000‐mb geopotential height for May shows that the Aleutian low extended far south of its usual position and was responsible for the weaker southerly winds and suppressed latent heat fluxes in the warm anomaly area. Finally, we note that the near simultaneous appearance of this warm anomaly in conjunction with warm El Niño waters off Peru makes El Niño an unlikely trigger for the northeast Pacific warm anomaly. We suggest a possible alternative scenario in which both events are remotely triggered by the intraseasonal oscillation.  相似文献   
83.
Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis (18O, 2H, 3H, 14C, 13C, 34S, 18O-SO4, 87Sr, 37Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with δ18O values (−9.6 to −12.4) similar to local, modern precipitation (−7.4 to −10), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted δ18O values (−16 to −18) relative to local, modern precipitation, and 14C ages 32,000 to more than 47,000 years before present. Sulfate, δ18O, δ2H, δ34S, and δ18O-SO4 concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between 14C and Darcy age estimates indicate that 14C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.  相似文献   
84.
Alex Loftus 《Geoforum》2009,40(3):326-334
This paper seeks to explore the radical democratic potential in urban artistic interventions. It does so through bringing Gramsci’s concept of nature together with his ‘cultural writings’ and broader debates around avant-garde artistic practice. Empirically, I focus on the work of City Mine(d), a Brussels-based interventionist collective, and Siraj Izhar, a London-based artist-activist. Within Gramsci’s writings, I argue, socio-natural relationships emerge through sensuous activity or work. Making a somewhat more ambitious claim, I suggest that Gramsci’s concept of nature rests on what geographers have come to understand as the production of nature. Whilst attention has only recently turned to this implicit political ecology, much greater attention has been focussed on Gramsci’s cultural insights. For Gramsci, cultural struggles are an integral part of the effort to shape a new reality. Whilst he emphasises the ‘bottom up’ nature of such struggles, the intervention of enlightened outsiders is often a necessary and frustrating complement. However, by turning attention to the manner in which hegemony relates to the production of nature, and through bringing this into dialogue with radical artistic practice, such implicit elitism might be challenged. City Mine(d) and Izhar, I argue, develop a non-vanguardist politics that sees the contestation of hegemony as a struggle integral to the day-to-day nature of cities.  相似文献   
85.
Changes of total moisture mass above an aquifer such as snow accumulation, soil moisture, and storage at the water table, represent changes of mechanical load acting on the aquifer. The resulting moisture-loading effects occur in all observation well records for confined aquifers. Deep observation wells therefore act as large-scale geological weighing lysimeters, referred to as “geolysimeters”. Barometric pressure effects on groundwater levels are a similar response to surface loading and are familiar to every hydrogeologist dealing with the “barometric efficiency” of observation wells. Moisture-loading effects are small and generally not recognized because they are obscured by hydraulic head fluctuations due to other causes, primarily barometric pressure changes. For semiconfined aquifers, long-term moisture-loading effects may be dissipated and obscured by transient flow through overlying aquitards. Removal of barometric and earth tide effects from observation well records allows identification of moisture loading and comparison with hydrological observations, and also comparison with the results of numerical models that can account for transient groundwater flow.  相似文献   
86.
87.
The spring freshet increases density stratification in Chesapeake Bay and minimizes oxygen transfer from the surface to the deep layer so that waters below 10 m depth experiece oxygen depletion which may lead to anoxia during June to September. Respiration in the water of the deep layer is the major factor contributing to oxygen depletion. Benthic respiration seems secondary. Organic matter from the previous year which has settled into the deep layer during winter provides most of the oxygen demand but some new production in the surface layer may sink and thus supplement the organic matter accumulated in the deep layer.  相似文献   
88.
Twenty-one 2–4 mm rock samples from the Apollo 12 regolith were analyzed by the 40Ar/39Ar geochronological technique in order to further constrain the age and source of nonmare materials at the Apollo 12 site. Among the samples analyzed are: 2 felsites, 11 KREEP breccias, 4 mare-basalt-bearing KREEP breccias, 2 alkali anorthosites, 1 olivine-bearing impact-melt breccia, and 1 high-Th mare basalt. Most samples show some degree of degassing at 700–800 Ma, with minimum formation ages that range from 1.0 to 3.1 Ga. We estimate that this degassing event occurred at 782 ± 21 Ma and may have been caused by the Copernicus impact event, either by providing degassed material or by causing heating at the Apollo 12 site. 40Ar/39Ar dating of two alkali anorthosite clasts yielded ages of 3.256 ± 0.022 Ga and 3.107 ± 0.058 Ga. We interpret these ages as the crystallization age of the rock and they represent the youngest age so far determined for a lunar anorthosite. The origin of these alkali anorthosite fragments is probably related to differentiation of shallow intrusives. Later impacts could have dispersed this material by lateral mixing or vertical mixing.  相似文献   
89.
DyeLIF? is a new version of laser‐induced fluorescence (LIF) for high‐resolution three‐dimensional subsurface mapping of nonaqueous phase liquids (NAPLs) in the subsurface. DyeLIF eliminates the requirement that the NAPL contains native fluorophores (such as those that occur in compounds like polynuclear aromatic hydrocarbons [PAHs]) and can therefore be used to detect chlorinated solvents and other nonfluorescing NAPLs that had previously been undetectable with conventional LIF tools. With DyeLIF, an aqueous solution of water and nontoxic hydrophobic dye is continuously injected ahead of the sapphire detection window while the LIF probe is being advanced in the subsurface. If soil containing NAPL is penetrated, the injected dye solvates into the NAPL within a few milliseconds, creating strong fluorescence that is transmitted via fiber‐optic filaments to aboveground optical sensors. A detailed field evaluation of the novel DyeLIF technology was performed at a contaminated industrial site in Lowell, Massachusetts, USA where chlorinated solvent dense nonaqueous phase liquid (DNAPL) persists below the water table in sandy sediments. Continuously cored boreholes were drilled adjacent to 5 of 30 DyeLIF probes that were advanced at that site. The cores were subsampled in high resolution to generate discrete‐depth soil samples as splits at the same depths where DNAPL was detected in the colocated DyeLIF probes. The cores were analyzed above ground using (1) colorimetric screening using hydrophobic dye tests, (2) laboratory extraction and quantitative chemical analysis, (3) “Benchtop” DyeLIF, and (4) volumetric moisture content. Correlation between DyeLIF and aboveground analyses of the soil cores was excellent: 98% agreement with positive DNAPL detections in samples where DNAPL pore saturations were >0.7% (based on quantitative soil analyses) and the ex situ tests. DyeLIF produced the equivalent of one aboveground colorimetric dye test every 0.2 inch (0.5 cm) of probing. With average daily probing of 395 linear feet (120.4 m), this was the equivalent of 12,039 discrete‐depth colorimetric dye tests/day. Because DyeLIF is an in situ measurement, there are no issues with soil core recovery like there would be for conventional ex situ colorimetric dye tests and 100% characterization of the probed intervals is achieved. Tracking the injection rate and pressure of the dye solution provides simultaneous data regarding relative soil permeability, similar to other direct push (DP) hydraulic profiling tools. Conventional LIF is considered the premier DP tool to identify and map NAPL containing PAHs in the subsurface or confirm its absence. While chlorinated solvent DNAPLs at some field sites contain impurities (e.g., solvated greases or oils) that make them detectable with conventional LIF techniques, at other sites, the DNAPL cannot be detected with conventional LIF. At such sites, the injection of a hydrophobic dye ahead of the sapphire window with the DyeLIF system now makes the LIF technology applicable to the many types of NAPLs that were previously invisible using conventional LIF techniques.  相似文献   
90.
Reactivity of iodide in volcanic soils and noncrystalline soil constituents   总被引:1,自引:0,他引:1  
Reaction of iodide [I(aq)] with a series of volcanic-ash soils was compared with reaction onto noncrystalline materials that constitute much of the inorganic fraction of these soils, Our hypothesis is that these high-surface-area materials account for iodide retention by providing sites for anion exchange. Iodide sorption onto imogolite and ferrihydrite is rapid (<30 min) but not particularly extensive; imogolite has a threefold to fourfold greater affinity for iodide compared to ferrihydrite on a mass basis. In contrast, rates of iodide retention by volcanic-ash soils were slow and did not attain a steady-state after 300 h. The extent of this largely irreversible reaction can be attenuated by sterilization, but it cannot be suppressed. The iodide retained by the soils can only be completely recovered by treatment with boiling 2 M sodium hydroxide. The amount of iodide retention by soils was inversely correlated with pH, but showed no relationship with organic matter concentration, surface area, or imogolite and ferrihydrite concentrations.

The reaction of iodide with the volcanic-ash soils is consistent with a rapid initial uptake by soil mineral surfaces, followed by a slower reaction of soil organic matter with oxidized forms of iodide. Under our experimental conditions, iodide is likely slowly oxidized by dissolved oxygen to molecular iodine. Solutions of molecular iodine [I2(aq)] react relatively quickly with laboratory-grade humic acid solutions and the rate increases with increasing pH. The slow rate of iodination is consistent with the continual formation and reaction of I2(aq)] or HOI(aq) by titration with soil organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号