首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35701篇
  免费   534篇
  国内免费   383篇
测绘学   1382篇
大气科学   2937篇
地球物理   7071篇
地质学   12762篇
海洋学   2628篇
天文学   8150篇
综合类   158篇
自然地理   1530篇
  2021年   339篇
  2020年   329篇
  2019年   360篇
  2018年   939篇
  2017年   908篇
  2016年   1210篇
  2015年   702篇
  2014年   1127篇
  2013年   1901篇
  2012年   1124篇
  2011年   1425篇
  2010年   1234篇
  2009年   1580篇
  2008年   1336篇
  2007年   1271篇
  2006年   1274篇
  2005年   1054篇
  2004年   927篇
  2003年   925篇
  2002年   925篇
  2001年   839篇
  2000年   806篇
  1999年   725篇
  1998年   680篇
  1997年   683篇
  1996年   611篇
  1995年   588篇
  1994年   565篇
  1993年   461篇
  1992年   415篇
  1991年   438篇
  1990年   447篇
  1989年   418篇
  1988年   387篇
  1987年   456篇
  1986年   379篇
  1985年   485篇
  1984年   519篇
  1983年   510篇
  1982年   476篇
  1981年   392篇
  1980年   391篇
  1979年   334篇
  1978年   355篇
  1977年   321篇
  1976年   282篇
  1975年   288篇
  1974年   321篇
  1973年   340篇
  1972年   212篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
We conducted an assessment of the TOPEX dual-frequency nadir ionosphere observations in the TOPEX/Poseidon (T/P) GDR by comparing TOPEX with the Center for Orbit Determination in Europe (CODE) Global Ionosphere Map (GIM), the climatological model IRI2001, and the DORIS (onboard T/P) relative ionosphere delays. We investigated the TOPEX (TOPEX Side A and TOPEX Side B altimeters, TSA and TSB, respectively) ionosphere observations for the time period 1995–2001, covering periods of low, intermediate, and high solar activity. Here, we use absolute path delays (at Ku-band frequency of the TOPEX altimeter and with positive signs) rather than Total Electron Content (TEC). We found significant biases between GIM and TOPEX (GIM–TOPEX) nadir ionosphere path delays: ?8.1 ± 0.4 {mm} formal uncertainties and equivalent to 3.7 TECu) and ?9.0 ± 0.7 {mm} (4.1 TECu) for TSA and TSB, respectively, indicating that the TOPEX path delay is longer (or with higher TECu) than GIM. The estimated relative biases vary with latitude and with daytime or nighttime passes. The estimated biases in the path delays (DORIS–TOPEX) are: ?10.9 ± 0.4 {mm} (5.0 TECu) and ?14.8 ± 0.6 {mm} (6.7 TECu), for TSA and TSB, respectively. There is a distinct jump of the DORIS path delays (?3.9 ± 0.7 {mm}, TSA delays longer than TSB delays) at the TSB altimeter switch in February 1999, presumably due to inconsistent DORIS processing. The origin of the bias between GIM (GPS, L-band) and TOPEX (radar altimeter, Ku-band) is currently unknown and warrants further investigation. Finally, the estimated drift rates between GIM and TSA, DORIS and TSA ionosphere path delays for the 6-year study span are ?0.4 mm/yr and ?0.8 mm/yr, respectively, providing a possible error bound for the TOPEX/Poseidon sea level observations during periods of low and intermediate solar activity.  相似文献   
972.
Jason-1 and TOPEX/Poseidon (T/P) measured sea-surface heights (SSHs) are compared for five regions during the verification tandem phase. The five regions are of similar latitude and spatial extent and include the Gulf of Mexico, Arabian Sea, Bay of Bengal, and locations in the Pacific and Atlantic Oceans away from land. In all five regions, a bias, defined as Jason SSH—TOPEX-B SSH, exists that is different for ascending and descending tracks. For example, in the Gulf of Mexico the bias for ascending tracks was ?0.13 cm and the bias for descending tracks was 2.19 cm. In the Arabian Sea the bias for ascending tracks was ?2.45 cm and the bias for descending tracks was ?1.31 cm. The bias was found to depend on track orientation and significant wave height (SWH), indicating an error in the sea state bias (SSB) model for one or both altimeters. The bias in all five regions can be significantly reduced by calculating separate corrections for ascending and descending tracks in each region as a function of SWH. The correction is calculated by fitting a second-order polynomial to the bias as a function of SWH separately for ascending and descending tracks. An additional constraint is required to properly apply the correction, and we chose to minimize the sum of the TOPEX-B and Jason-1 root-mean-square (rms) crossover differences to be consistent with present SSB models. Application of this constraint shows that the correction, though consistent within each region, is different for each region and that each satellite contributes to the bias. One potential source that may account for a portion of the difference in bias is the leakage in the wave forms in TOPEX-B due to differing altitude rates for ascending and descending tracks. Global SSB models could be improved by separating the tracks into ascenders and descenders and calculating a separate SSB model for each track.  相似文献   
973.
The Indian Ocean tsunami of December 26, 2004, not only affected the Bay of Bengal coast of India but also part of the Arabian Sea coast of India. In particular, the tsunami caused loss of life and heavy damage on some parts of the Kerala coast in southwest India. The tsunami traveled west, south of Sri Lanka, and some of the tsunami energy was diffracted around Sri Lanka and the southern tip of India and moved northward into the Arabian Sea. However, tsunami, being a long gravity wave with a wave length of a few hundred kilometers, has to take a wide turn. In that process, it missed the very southern part of the Kerala coast and did not achieve large amplitudes there. However, further north, the tsunami achieved amplitudes of upto 5 m and caused loss of life and significant damage. Here we identify the physical oceanographic processes that were responsible for selective amplification of the tsunami in certain locations.  相似文献   
974.
Mapping the seabed along the Norwegian coast is costly and time consuming. Hence, finding a modeling method to separate rocky seabed from other substrate types will provide digital maps that may be used to develop cost-effective sampling designs to predict species and habitat distribution. Our approach was to use geophysical data that were quantitative and objectively defined, generalized additive models (GAMs), and Akaike information criterion (AIC) to develop statistical models and select among them. We found that slope, terrain curvature, wave exposure, and depth predicted rocky seabed occurrence with a high degree of certainty.  相似文献   
975.
The accurate surface wind in the equatorial Indian Ocean is crucial for modeling ocean circulation over this region. In this study, the surface wind analysis generated at the European Center for Medium Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) are compared with NASA QuikSCAT satellite derived Level2B (swath level) and Level3 (gridded) surface winds for the year 2005. It is observed that the ECMWF winds exhibit speed bias of 1.5 m/s with respect to QuikSCAT Level3 in the southern equatorial Indian Ocean. The NCEP winds are found to exhibit speed bias (1.0–1.5 m/s) in the southern equatorial Indian Ocean specifically during January–February 2005. The biases are also observed in the analysis when compared with Level2B product as well; however, it is less in comparison to Level3 products. The amplitude of daily variations of both ECMWF and NCEP wind speed in Bay of Bengal and parts of the Arabian Sea is about 80% of that in QuikSCAT, while in the equatorial Indian Ocean it is about 60% of that of QuikSCAT.  相似文献   
976.
An assessment of cyclone risk and vulnerability at the village level has evolved, which is an important component of the information system for local level development action plans for preparedness and mitigation. Here, a case study for the Nellore district along the east coast of India is considered. Using maximum probable surges along the coast, total water level (TWL) due to the combined effect of surge, tide, and wind wave is computed for the most vulnerable coastal villages of the Nellore district due to any tropical cyclones. The computations suggest that the TWL along the Nellore coast varies from 2 m in the south to 4 m in the north.  相似文献   
977.
The sea level variations along Visakhapatnam coast are governed by astronomical tides and nontidal oscillations including atmospheric pressure, winds, coastal currents, Ekman Pumping, and river influx. Tidal and nontidal sea level oscillations are usually studied separately because of the vastly different ways in which they are forced. In this study the tidal oscillations along Visakhapatnam are analyzed using GOTIC2 tidal model. The correlation between monthly mean sea level and monthly mean tides is 47% (r = 0.68) and increases to 54% (r = 0.74) when applied for inverse-barometric effect. The major six partial tides are computed and presented. The tidal variations from Neap tide to Spring tide are studied.  相似文献   
978.
A dynamical statistical method is applied for operational forecasting of the Bay of Bengal tropical cyclone “Nargis” of April–May 2008. The method consists of three forecast components, namely (a) analysis of Genesis Potential Parameter (GPP) and maximum potential intensity, (b) track prediction, and (c) 12 hourly intensity prediction for forecasts up to 72 hours. The results of the study showed that GPP could provide necessary predictive signal at early stages of development on the further intensification of the low pressure system into a tropical cyclone. The landfall forecast position errors by different operational numerical models (NWP) showed landfall position errors ranging from 10 km to 150 km and landfall time error ranges from 6 hours early to 6 hours delay. The dynamical statistical model is capable to provide 12 hourly nearly realistic intensity forecasts up to 60 hours of forecast.  相似文献   
979.
Many ship-borne geodetic surveys at sea, such as Global Navigation Satellite System (GNSS)-based sea surface height (SSH) observation, acoustic profiling of the bottom, and others, deal with a dynamic topography which undergoes several changes during the survey campaign (e.g., changes in tide, salinity and currents). Those changes affect the measurements and may causes for some variations in the results. There are several methods for tidal variations correction, being the most dominant phenomena, such as tidal zoning, tidal constituent interpolation or ocean tidal models. In this study, we have implemented the tidal constituent interpolation method for the Israeli coastline in order to assess its quality and determine whether it is suitable for use in this particular region. This paper depicts the interpolation method, discusses some difficulties in the implementation for the Israeli coast and presents results from exemplary processing. In addition, we compare the results to those obtained using global and regional tidal models.  相似文献   
980.
Abstract

Seismic velocities of Indus suture rock types from Dras‐Sanko‐Kargil, Kashmir Himalaya, as a function of pressure up to 10 kbar were studied. The high‐pressure measurements on the rocks reflect the depthwise increase in velocity, and in general they help in better understanding and better interpretation of the regional rocks in terms of their geological observations. An attempt has been made at correlation with ocean‐dredged samples, and it was found that the ultramafics, gabbros, and dykes are compatible with oceanic rocks and other ophiolite sequences, whereas metavolcanics are incompatible, suggesting the dismembered nature of Indus ophioli‐tes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号