首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24698篇
  免费   195篇
  国内免费   919篇
测绘学   1420篇
大气科学   2015篇
地球物理   4561篇
地质学   11706篇
海洋学   1017篇
天文学   1703篇
综合类   2161篇
自然地理   1229篇
  2022年   1篇
  2021年   8篇
  2020年   2篇
  2019年   2篇
  2018年   4772篇
  2017年   4046篇
  2016年   2596篇
  2015年   241篇
  2014年   96篇
  2013年   41篇
  2012年   1004篇
  2011年   2747篇
  2010年   2041篇
  2009年   2334篇
  2008年   1906篇
  2007年   2376篇
  2006年   63篇
  2005年   209篇
  2004年   420篇
  2003年   421篇
  2002年   260篇
  2001年   55篇
  2000年   59篇
  1999年   16篇
  1998年   26篇
  1997年   2篇
  1996年   5篇
  1993年   5篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1985年   2篇
  1984年   1篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
361.
Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciation and Trend Network (STN). If combined, these three networks provide speciated fine particulate data at several hundred locations throughout the United States. Yet, differences in sampling protocols and samples handling may not allow their joint use. With these concerns in mind, the objective of this study is to assess the spatial and temporal comparability of the sulfate, nitrate and ammonium concentrations reported by each of these networks. One of the major differences between networks is the sampling frequency they adopted. While CASTNet measures pollution levels on seven-day integrated samples, STN and IMPROVE data pertain to 24-hour samples collected every three days. STN and IMPROVE data therefore exhibit considerably more short-term variability than their CASTNet counterpart. We show that, despite their apparent incongruity, averaging the data with a window size of four to six weeks is sufficient to remove the effects of differences in sampling frequency and duration and allow meaningful comparison of the signals reported by the three networks of concern. After averaging, all the sulfate and, to a lesser degree, ammonium concentrations reported are fairly similar. Nitrate concentrations, on the other hand, are still divergent. We speculate that this divergence originates from the different types of filters used to collect particulate nitrate. Finally, using a rotated principal component technique (RPCA), we determined the number and the geographical organization of the significant temporal modes of variation (clusters) detected by each network for the three pollutants of interest. For sulfate and ammonium, the clusters’ geographical boundaries established for each network and the modes of variations within each cluster seem to correspond. RPCA erformed on nitrate concentrations revealed that, for the CASTNet and IMPROVE networks, the modes of variation do not correspond to unified geographical regions but are found more sporadically. For STN, the clustered areas are unified and easily delineable. We conclude that the possibility of jointly using the data collected by CASTNet, IMPROVE and STN has to be weighed pollutant by pollutant. While sulfate and ammonium data show some potential for joint use, at this point, combining the nitrate data from these monitoring networks may not be a judicious choice.  相似文献   
362.
— In this paper, the site characteristics of the Dahan downhole array are studied by analyzing the September 21, 1999 M 7.3 Chi-Chi earthquake sequence including the main shock and some aftershocks. The four-level array (0 m, 50 m, 100 m and 200 m) is located to the north of Hualien City in eastern Taiwan. Polarization analysis is used to check the orientation errors of the seismometers at different levels of depth. If the surface instrument is chosen as reference, the angle between the major polarization axes of the surface and any downhole records is the orientation error that must be corrected for the downhole accelerographs. The orientation errors at depths of 50 m, 100 m and 200 m are 32°, 120° and –84°. After the corrections, the coherency between the surface and downhole records is substantially improved. Spectral ratio analysis shows that the predominant frequency of the Chi-Chi main shock shifts to a lower frequency. We also simulate ground motions at different depths by using the Haskell method with a linear velocity structure model. The record at surface is chosen as the input motion. Compared with the observed data, ground acceleration can be well reproduced for the aftershocks (weak-motion events) of the September 21, 1999 M 7.3 Chi-Chi earthquake. However, for the Chi-Chi main shock, the synthetic waveform cannot match well with the observation neither in amplitude nor in phase. This indicates that large ground shaking probably induced the nonlinear site effect at that time, and the model used cannot support it.Acknowledgement. The authors would like to express their thanks to Dr. L.F. Bonilla and one anonymous reviewer for their valuable suggestions. This research was supported by the National Science Council under grant number NSC 89-2921-M-194-007. The Institute of Earth Sciences, Academia Sinica supplied the strong-motion data. The support of these organizations is gratefully acknowledged.  相似文献   
363.
364.
365.
The evolution of magnesium chloride brines with high bromide contents via a multistage reaction and dissolution process has been studied in brine seeps of a German potash mine. The observed chemical trends and phase equilibria can be modeled and interpreted in terms of a NaCl solution (cap rock brine) infiltrating into a potash zone characterized by the metamorphic mineral assemblage kieserite + sylvite + halite + anhydrite. Establishment of a persistent, stable equilibrium assemblage and constant fluid composition in the invariant point IP1 of the six component (Na-K-Mg-Ca-Cl-SO4-H2O) system of oceanic salts is prevented by the perpetually renewed input of NaCl-brine and by the intermittent exposure of incompatible kieserite. Instead, the solutions develop towards the metastable invariant point IP1(gy), with the mineral assemblage carnallite + polyhalite + sylvite + halite + gypsum, where gypsum takes the place of anhydrite (stage I). The temporary exposure of kieserite and the ensuing formation of polyhalite effectively buffer the solutions along the metastable polyhalite phase boundary during stages II and III. Eventually, in stage IV, polyhalite becomes depleted and admixture of more NaCl brine leads to low sulfate solution compositions, which are now only constrained by carnallite + sylvite + halite, and the once hexary system degenerates to a quaternary one (Na-K-Mg-Cl-H2O) in point E. Bromide in brines shows equilibrium partitioning with respect to the wall rock minerals. The pattern of evolving brine compositions may serve as a model for similar brine occurrences, which in some cases may have been misinterpreted as remains of fossil, highly concentrated and chemically modified seawater. Similar magnesium chloride brines of salt lakes (e.g., Dead Sea, Dabusun Lake) show subtle differences and are constrained by fewer mineral equilibria (more degrees of freedom), and their low sulfate contents are due to gypsum precipitation, driven by calcium chloride input from dolomitization reactions. Finally, the observed reaction sequence is generalized, and a model for the formation of magnesium sulfate depleted, chloride-type potash salts and bischofite deposits by leaching of sulfate-type evaporites is proposed.  相似文献   
366.
367.
368.
369.
370.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号