首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   7篇
  国内免费   3篇
测绘学   9篇
大气科学   3篇
地球物理   10篇
地质学   15篇
海洋学   2篇
天文学   10篇
综合类   3篇
自然地理   5篇
  2023年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   6篇
  2015年   3篇
  2014年   9篇
  2013年   4篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2005年   1篇
  2004年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1983年   1篇
排序方式: 共有57条查询结果,搜索用时 93 毫秒
51.
Morphometric analysis of two sub-watersheds was carried using remote sensing and GIS techniques. Detailed drainage map prepared from aerial photographs and SOI toposheets was updated using latest IRS-ID PAN sharpened LISS-III analog data. Updated drainage maps were used for the morphometric analysis of the two sub-watersheds. Both the sub-watersheds show dendritic to sub-dendritic drainage pattern with moderate drainage texture. High bifurcation ratio indicates a strong structural control on the drainage. Logarithm of number of stream vs. stream order show deviation from straight line indicating regional upliftment. In spite of mountainous relief, low drainage density values indicate that the area is underlain by impermeable sub-surface material. Circulatory and elongation ratios show that both the sub-watersheds have elongated shape.  相似文献   
52.
53.
In the problem of 2+2 bodies in the Robe’s setup, one of the primaries of mass m*1m^{*}_{1} is a rigid spherical shell filled with a homogeneous incompressible fluid of density ρ 1. The second primary is a mass point m 2 outside the shell. The third and the fourth bodies (of mass m 3 and m 4 respectively) are small solid spheres of density ρ 3 and ρ 4 respectively inside the shell, with the assumption that the mass and the radius of third and fourth body are infinitesimal. We assume m 2 is describing a circle around m*1m^{*}_{1}. The masses m 3 and m 4 mutually attract each other, do not influence the motion of m*1m^{*}_{1} and m 2 but are influenced by them. We also assume masses m 3 and m 4 are moving in the plane of motion of mass m 2. In the paper, the equations of motion, equilibrium solutions, linear stability of m 3 and m 4 are analyzed. There are four collinear equilibrium solutions for the given system. The collinear equilibrium solutions are unstable for all values of the mass parameters μ,μ 3,μ 4. There exist an infinite number of non collinear equilibrium solutions each for m 3 and m 4, lying on circles of radii λ,λ′ respectively (if the densities of m 3 and m 4 are different) and the centre at the second primary. These solutions are also unstable for all values of the parameters μ,μ 3,μ 4, φ, φ′. Such a model may be useful to study the motion of submarines due to the attraction of earth and moon.  相似文献   
54.
http://www.sciencedirect.com/science/article/pii/S1674987111001356   总被引:1,自引:0,他引:1  
A total of 103 surface sediment samples collected from the water depth range of 15—3300 m along Vijaydurg-Karwar stretch of central west coast of India were analyzed for foraminiferal content. Relict benthic foraminiferal assemblage was noted within 50—135 m water depth.The relict benthic foraminiferal assemblage that includes Amphistegina,Operculum and Alveolinetta in sediment samples within the water depth of 85—135 m indicates presence of coral reef at this depth during Early Holocene. The presence of barnacle fouling on Relict foraminifera at 60—90 m confirms the paleo-shoreline. The shallow depth zone is characterized by presence of agglutinated relict foraminifera.The agglutinated forms indicate freshwater influx,which eventually increased the sea level and subsequently deteriorated the paleo-coral reef.  相似文献   
55.
Discharge and sediment load data for several stations along the Ganga River and its major tributaries in the western Ganga plains (WGP) for a period of ~30 years have been analysed to understand the hydrological characteristics and sediment dynamics. In terms of hydrology, the rivers are less flood‐prone than believed, exceeding bankfull discharges less frequently than the expected 1.5 year return interval. This has been attributed to the rivers of this region occupying incised valleys formed in the Late Quaternary period. Rivers draining the WGP are supply‐limited systems compared to those draining the eastern Ganga plains (EGP) which have been characterized as transport‐limited systems. We suggest that such geomorphic diversity as a function of spatial variability in precipitation regime and hinterland geology has existed for at least the Late Quaternary period and they in turn influence the modern day hydrology of the river systems in a significant way. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
56.
Imaging in geological challenging environments has led to new developments, including the idea of generating reflection responses by means of interferometric redatuming at a given target datum in the subsurface, when the target datum lies beneath a complex overburden. One way to perform this redatuming is via conventional model-based wave-equation techniques. But those techniques can be computationally expensive for large-scale seismic problems since the number of wave-equation solves is equal to two times the number of sources involved during seismic data acquisition. Also conventional shot-profile techniques require lots of memory to save full subsurface extended image volumes. Therefore, we can only form subsurface image volumes in either horizontal or vertical directions. To exploit the information hidden in full subsurface extended image volumes, we now present a randomized singular value decomposition-based approach built upon the matrix probing scheme, which takes advantage of the algebraic structure of the extended imaging system. This low-rank representation enables us to overcome both the computational cost associated with the number of wave-equation solutions and memory usage due to explicit storage of full subsurface extended image volumes employed by conventional migration methods. Experimental results on complex geological models demonstrate the efficacy of the proposed methodology and allow practical reflection-based extended imaging for large-scale five-dimensional seismic data.  相似文献   
57.
Geospatial approaches to monitoring and mapping water quality over a wide range of temporal and spatial scales have the potential to save field and laboratory efforts. The present study depicts the estimation of water quality parameters, namely turbidity and phosphate, through regression analysis using the reflectance derived from remote sensing data on the west coast of Mumbai, India. The predetermined coastal water samples were collected using the global positioning system (GPS) and were measured concurrently with satellite imagery acquisition. To study the influence of wastewater, the linear correlations were established between water quality parameters and reflectance of visible bands for either set of imagery for the study area, which was divided into three zones: creek water, shore‐line water and coastal water. Turbidity and phosphate have the correlation coefficients in the range 0.75–0.94 and 0.78–0.98, respectively, for the study area. Negative correlation was observed for creek water owing to high organic content caused by the discharges of domestic wastewater from treatment facilities and non‐point sources. Based on the least square method, equations are formulated to estimate turbidity and phosphate, to map the spatial variation on the GIS platform from simulated points. The applicability of satellite imagery for water quality pattern on the coast is verified for efficient planning and management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号