首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   19篇
  国内免费   11篇
测绘学   148篇
大气科学   68篇
地球物理   214篇
地质学   505篇
海洋学   51篇
天文学   208篇
综合类   16篇
自然地理   32篇
  2022年   24篇
  2021年   24篇
  2020年   18篇
  2019年   26篇
  2018年   62篇
  2017年   53篇
  2016年   81篇
  2015年   44篇
  2014年   64篇
  2013年   92篇
  2012年   66篇
  2011年   48篇
  2010年   56篇
  2009年   54篇
  2008年   50篇
  2007年   42篇
  2006年   31篇
  2005年   24篇
  2004年   26篇
  2003年   11篇
  2002年   5篇
  2001年   15篇
  2000年   27篇
  1999年   17篇
  1998年   15篇
  1997年   4篇
  1996年   14篇
  1995年   8篇
  1994年   10篇
  1993年   14篇
  1992年   14篇
  1991年   26篇
  1990年   9篇
  1989年   12篇
  1988年   10篇
  1987年   19篇
  1986年   11篇
  1985年   7篇
  1984年   9篇
  1983年   16篇
  1982年   8篇
  1981年   7篇
  1980年   10篇
  1979年   9篇
  1978年   8篇
  1977年   5篇
  1976年   10篇
  1974年   6篇
  1973年   4篇
  1966年   4篇
排序方式: 共有1242条查询结果,搜索用时 15 毫秒
121.
Large-scale structures, textures and mineral assemblages in the Precambrian rocks of the Banded Gneissic Complex and the overlying Delhi Group in north-central Aravalli Mountain reveal a complex deformational-crystallization history. In the basement Gneissic Complex at least three deformational events, D0, D1 and D2, and two separate episodes of metamorphism, M1 and M2, are recognized. The supracrustal Delhi Rocks display only two phases of deformation, D1 and D2, associated with a single protracted period of metamorphism, M2.The first phase of deformation (D1) of the Delhi orogeny (1650-900 m.y.) produced large isoclinal folds that are overturned towards the southeast and have gentle plunges in NE and SW directions. The second phase of deformation (D2) gave rise to tight open folds on the limbs and axial-plane surfaces of the D1 folds. These folds generally plunge towards the N and NNW at 30°–80°. In the Basement Complex one more deformation (D0) of the Pre-Delhi orogeny (> 2000 m.y.) is recorded by the presence of reclined and recumbent folds with W to WNW trending fold axes. The D0 folds were superimposed by D1 and D2 folds during the Delhi orogeny.The three deformational events have been correlated with the crystallization periods of minerals in the rocks and a setting in time is established for this part of the Aravalli range.  相似文献   
122.
An investigation was undertaken regarding the adsorption of different heavy metal ions from aqueous solutions using ??-diketone-functionalized styrene divinylbenzene resin under different experimental conditions such as initial concentration of metal ions, contact time, pH, and chelating capacity. The functionalization of resin was carried out by the condensation reaction of sodium salt of ??-diketones (pentane-1,3-dione) and chloromethylated styrene?Cdivinylbenzene resin in dichloromethane. Functionalized resin beads were characterized by Fourier transform infrared spectroscopy. The batch method was employed using different metal ions solution from 5 to 15?mg/L at different contact times. The adsorption kinetics was tested for the pseudo-first order, pseudo-second order reaction at different experimental conditions. The rate constant of adsorption kinetic models were also calculated and good correlation coefficient (R 2?>?0.9941) was obtained for pseudo-second order kinetic model. The maximum adsorption value obtain for lead (0.725728?mg/g), chromium (0.9199?mg/g), nickel (0.4974?mg/g), cobalt (0.6196?mg/g) and cadmium (0.6519?mg/g) at equilibrium condition, which shows that ??-diketone-functionalized styrene divinylbenzene resin is an effective adsorbent for toxic metal ions.  相似文献   
123.
The proper usage of modal composition and geochemical classification of granitoids is discussed for assigning a proper nomenclature for the Angadimogar pluton, Kerala, southwestern India. This discussion is mainly aimed at addressing questions concerning the nomenclature of Angadimogar pluton (syenitevs. granite). Modal composition and whole-rock XRD data clearly show that the pluton exposed near Angadimogar is a quartz-syenite and its geochemistry is typical of a ferroan, metaluminous, alkali (A-type) granitoid  相似文献   
124.
Detailed studies on the status of Saraswati Nadi of northern Haryana have been carried out using multi date and multi resolution satellite images, GIS techniques and ground data. Palaeochannels have been delineated using remote sensing techniques and validated using discovered archaeological sites, sedimentological data from drilled wells and water quality data. Detailed analysis of hydrological data (rainfall and stream discharge), catchment area and petrographic analysis of rock samples have been done to decipher the dwindling state of Saraswati Nadi. Likelihood of Adi Badri as the place of origin of Saraswati Nadi and its possible linkage with the Vedic Saraswati River is discussed. Suggestions have been given for safeguarding and revival of Saraswati Nadi as a national heritage.  相似文献   
125.
Present study is an effort to distinguish between the contributions of natural weathering and anthropogenic inputs towards high salinity and nutrient concentrations in the groundwater of National Capital Territory (NCT) Delhi, India. Apart from the source identification, the aquifer of entire territory has been characterized and mapped on the basis of salinity in space and water suitability with its depth. Major element chemistry, conventional graphical plots and specific ionic ratio of Na+/Cl, SO4 2−/Cl, Mg2+/Ca2+ and Ca2+/(HCO3  + SO4 2−) are conjointly used to distinguish different salinization sources. Results suggest that leaching from the various unlined landfill sites and drains is the prime cause of NO3 contamination while study area is highly affected with inland salinity which is geogenic in origin. The seasonal water level fluctuation and rising water level increases nutrients concentration in groundwater. Mixing with old saline sub-surface groundwater and dissolution of surface salts in the salt affected soil areas were identified as the principle processes controlling groundwater salinity through comparison of ionic ratio. Only minor increase of salinity is the result of evaporation effect and pollution inflows. The entire territory has characterized into four groups as fresh, freshening, near freshening and saline with respect to salinity in groundwater. The salinity mapping suggests that in general, for drinking needs, groundwater in the fresh, freshening and near freshening zone is suitable up to a depth of 45, 20 and 12 m, respectively, while the saline zones are unsuitable for any domestic use. In the consideration of increasing demand of drinking water in the area; present study is vital and recommends further isotopic investigations and highlights the need of immediate management action for landfill sites and unlined drains.  相似文献   
126.
A body of komatiitic amphibolite, an enclave within the Archean high-grade orthogneisses in southern India, shows mild chemical weathering under semiarid conditions. Along fractures, chemical weathering has advanced (Chemical Index of Alteration &sqbl0;CIA&sqbr0;=53; CIA of fresh rock approximately 26) to the extent that secondary Mg-Fe-Al clay minerals have formed and the rock has turned brownish red, soft, and fine grained. The weathering process has resulted in the mobilization and redistribution of the so-called immobile elements Fe, Al, Ti, and REE effected by the nature of secondary mineral formation (talc vs. aluminous clay minerals) and also possibly by soil microbes. In the initial stages of secondary mineral formation, there is a small loss of Fe, Al, and REE (noticeably Eu). However, in the fracture zone as well as in the incipiently altered zone, there is significant REE enrichment, probably affected by a different precipitation mechanism. Mobilized REE may have come from a minor alteration of clinopyroxene.  相似文献   
127.
We report unusual occurrence of glass shards with diverse morphologies and compositions in the volcanic ash associated with the early Neogene marine stratigraphic succession (early Miocene to early middle Miocene) of Andaman-Nicobar Islands, Northeast Indian Ocean. These small, ash-size (200 to 800 μm) broken pieces of glass shards when viewed under Scanning Electron Microscope (SEM), represent distinctive — platy, sickle, bicuspate, concentric, angular, horn shape and slivers with broken angular bubble wall — morphologies. Glass shards are colourless. But, a few are grey or reddish-brown, indicate high Fe content. Chilled, juvenile, angular and blocky shards show fragments of highly viscous, silicic magma. Spindle and ribbon-shape shards form from a low viscosity basalt and rhyolite. Electron Probe Micro Analyzer (EPMA) was used to measure low concentration variations of major oxides within individual amorphous silicate solid glass shards whose disordered atomic structure is that of a liquid derived from a silicate melt. Major elemental chemistry of early Miocene glass shards from Colebrook island show low silica, alkalis, high FeO(T) MgO and CaO, whereas, early middle Miocene glass shards from Inglis island show high silica, alkalis, low FeO(T), MgO and CaO contents. These data-sets when plotted on ternary TotalAlkali-Silica and Na2O+K2O-MgO-FeO(T) diagrams show that their data plots lie within the basaltic-andesite, tephri-phonolite, rhyolite and trachyte fields. These glass shards which were present in the provenance, formed by explosive eruption of lavas, ranging in composition from basalt to rhyolite with andesite/ basalt-andesite being the most common magma types erupted sub-areally, implying island arc type of tectono-magmatic setting for the formation of these lavas. However, more evolutionary variant rhyolite was most likely formed by crystal fractionation.  相似文献   
128.
Groundwater is a treasured earth’s resource and plays an important role in addressing water and environmental sustainability. However, its overexploitation and wide spatial variability within a basin and/or across regions are posing a serious challenge for groundwater sustainability. Some parts of southern West Bengal of India are problematic for groundwater occurrence despite of high rainfall in this region. Characterization of an aquifer in this area is very important for sustainable development of water supply and artificial recharge. Electrical resistivity surveys using 1-D and 2-D arrays were performed at a regular interval from Subarnarekha River at Bhasraghat (south) to Kharagpur (north) to map the lithological variations in this area. Resistivity sounding surveys were carried out at an interval of 2–3 km. Subsurface resistivity variation has been interpreted using very fast simulated annealing (VFSA) global optimization technique. The analysis of the field data indicated that the resistivity variation with depth is suitable in the southern part of the area and corresponds to clayey sand. Interpreted resistivity in the northern part of the area is relatively high and reveals impervious laterite layer. In the southern part of the area resistivity varies between 15 and 40 Ωm at a depth below 30 m. A 2-D resistivity imaging conducted at the most important location in the area is correlated well with the 1-D results. Based on the interpreted resistivity variation with depth at different locations different types of geologic units (laterite, clay, sand, etc.) are classified, and the zone of interests for aquifer has been demarcated. Study reveals that southern part of the area is better for artificial recharge than the northern part. The presence of laterite cover in the northern part of the area restricts the percolation of rainwater to recharge the aquifer at depth. To recharge the aquifer at depth in the northern part of the area, rainwater must be sent artificially at depth by puncturing laterite layers on the top. Such studies in challenging areas will help in understanding the problems and finding its solution.  相似文献   
129.
The soil mass is subjected to temperature variation due to several human activities (viz. tanks storing heated fluids, buried cables and pipelines, air-conditioning ducts, disposal of nuclear and thermal power plant wastes etc.), which result in heat-induced migration of the moisture in it. Though several studies have been conducted in the past to investigate the mechanism of heat migration through the soil mass, a methodology for ‘real-time measurement of the variations in temperature, flux and moving moisture front, in tandem, with respect to space' has rarely been attempted. In this context, extensive laboratory investigations were conducted to measure real-time flux and temperature variations in the sandy soils, and the validation of results has been done by employing an equivalent electrical circuit programme, LTspice. Subsequently, a mathematical model PHITMDS (i.e. Prediction of Heat-Induced Temperature and Moisture Distribution in Soil) has been developed and its utility and efficacy, for predicting the depth-wise temperature and heat-induced moisture migration, due to evaporation, in terms of position of moving moisture front in the sandy soil has been critically discussed and demonstrated.  相似文献   
130.
We present values of velocity of ground water percolation (Vg) over large depth intervals, varying from shallow to deeper depths in Indaram area of Godavari sub-basin. The velocities have been estimated using available measured geothermal data. Sub-surface temperatures were measured in seven boreholes. Terrestrial heat flow values are calculated using temperature data and measured values of thermal conductivity of core samples. The results show that Vg is ~3.4 ×10?7 cm /sec in the top layers (70–150 m) and decreases to ~0.04×10?7 cm/sec in the deeper levels around 350 m depth and becomes negligibly small thereafter, thereby, indicating that the overall permeability of the sub-surface layers, due to the occurrence of successions of permeable, semi-permeable layers gets reduced to more or less zero at depths around 350 m. The value of Thermal Peclet Number, which is the ratio of the heat transfer through convection to that through conduction, naturally becomes negligible around this depth in the area. The observed consistency of the magnitude of heat flow through various deep sections is a clear indicator that water percolation is practically reduced to zero at depths around 320–400 m and that conduction is the dominant mechanism of heat transfer below the inferred depth section, while the upper layers are dominated by recharge at various depths by near surface water from streams at Indaram.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号