首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2863篇
  免费   81篇
  国内免费   52篇
测绘学   281篇
大气科学   263篇
地球物理   532篇
地质学   1332篇
海洋学   135篇
天文学   345篇
综合类   50篇
自然地理   58篇
  2023年   16篇
  2022年   52篇
  2021年   60篇
  2020年   63篇
  2019年   67篇
  2018年   256篇
  2017年   235篇
  2016年   229篇
  2015年   132篇
  2014年   205篇
  2013年   255篇
  2012年   169篇
  2011年   160篇
  2010年   140篇
  2009年   150篇
  2008年   132篇
  2007年   83篇
  2006年   75篇
  2005年   51篇
  2004年   45篇
  2003年   30篇
  2002年   21篇
  2001年   18篇
  2000年   27篇
  1999年   20篇
  1998年   16篇
  1997年   17篇
  1996年   11篇
  1995年   10篇
  1994年   20篇
  1993年   14篇
  1992年   6篇
  1991年   24篇
  1990年   18篇
  1989年   14篇
  1988年   10篇
  1987年   17篇
  1986年   14篇
  1985年   15篇
  1984年   11篇
  1982年   6篇
  1980年   5篇
  1979年   8篇
  1978年   5篇
  1975年   6篇
  1974年   11篇
  1973年   5篇
  1972年   8篇
  1971年   5篇
  1969年   5篇
排序方式: 共有2996条查询结果,搜索用时 31 毫秒
171.
Singular Value Decomposition (SVD) model is implemented to recognize the Total Electron Content (TEC) time series of daily, temporal as well as seasonal characteristics throughout the 24th solar cycle period of the year 2015 in the study. The Vertical (vTEC) analysis has been carried out with Global Positioning System (GPS) data sets collected from five stations from India namely GNT, Guntur (16.44° N, 80.62° E), and IISC, Bangalore (12.97° N, 77.59° E), LCK2, Lucknow (26.76° N, 80.88° E), one station from Thailand namely AITB, Bangkok (14.07° N, 100.61° E), and one station from South Andaman Island namely PBR, Port Blair (11.43° N, 92.43° E), located in low latitude region. The first five singular value modes constitute about 98% of the total variance, which are linearly transformed from the observed TEC data sets. So it is viable to decrease the number of modeling parameters. The Fourier Series Analysis (FSA) is carried out to characterize the solar-cycle, annual and semi-annual dependences through modulating the first three singular values by the solar (F10.7) and geomagnetic (Ap) indices. The positive correlation coefficient (0.75) of daily averaged GPS–TEC with daily averaged F10.7 strongly supports the temporal variations of the ionospheric features depends on the solar activity. Further, the significance and reliability of the SVD model is evaluated by comparing it with GPS–TEC data and the standard global model (Standard Plasma-Spherical Ionospheric Model, SPIM and International Reference Ionosphere, IRI 2016).  相似文献   
172.
We have classified a sample of 37,492 objects from SDSS into QSOs, galaxies and stars using photometric data over five wave bands (u, g, r, i and z) and UV GALEX data over two wave bands (near-UV and far-UV) based on a template fitting method. The advantage of this method of classification is that it does not require any spectroscopic data and hence the objects for which spectroscopic data is not available can also be studied using this technique. In this study, we have found that our method is consistent by spectroscopic methods given that their UV information is available. Our study shows that the UV colours are especially important for separating quasars and stars, as well as spiral and starburst galaxies. Thus it is evident that the UV bands play a crucial role in the classification and characterization of astronomical objects that emit over a wide range of wavelengths, but especially for those that are bright at UV. We have achieved the efficiency of 89% for the QSOs, 63% for the galaxies and 84% for the stars. This classification is also found to be in agreement with the emission line diagnostic diagrams.  相似文献   
173.
A regional ocean circulation model with four-dimensional variational data assimilation scheme is configured to study the ocean state of the Indian Ocean region (65°E–95°E; 5°N–20°N) covering the Arabian Sea (AS) and Bay of Bengal (BoB). The state estimation setup uses 10 km horizontal resolution and 5 m vertical resolution in the upper ocean. The in-situ temperature and salinity, satellite-derived observations of sea surface height, and blended (in-situ and satellite-derived) observations of sea surface temperature alongwith their associated uncertainties are used for data assimilation with the regionally configured ocean model. The ocean state estimation is carried out for 61 days (1 June to 31 July 2013). The assimilated fields are closer to observations compared to other global state estimates. The mixed layer depth (MLD) of the region shows deepening during the period of assimilation with AS showing higher MLD compared to the BoB. An empirical forecast equation is derived for the prediction of MLD using the air–sea forcing variables as predictors. The surface and sub-surface (50 m) heat and salt budget tendencies of the region are also investigated. It is found that at the sub-surface, only the advection and diffusion temperature and salt tendencies are important.  相似文献   
174.
Anharmonic oscillations of rotating stars have been studied by various authors in literature to explain the observed features of certain variable stars. However, there is no study available in literature that has discussed the combined effect of rotation and tidal distortions on the anharmonic oscillations of stars. In this paper, we have created a model to determine the effect of rotation and tidal distortions on the anharmonic radial oscillations associated with various polytropic models of pulsating variable stars. For this study we have used the theory of Rosseland to obtain the anharmonic pulsation equation for rotationally and tidally distorted polytropic models of pulsating variable stars. The main objective of this study is to investigate the effect of rotation and tidal distortions on the shapes of the radial velocity curves for rotationally and tidally distorted polytropic models of pulsating variable stars. The results of the present study show that the rotational effects cause more deviations in the shapes of radial velocity curves of pulsating variable stars as compared to tidal effects.  相似文献   
175.
On 28th September 2015, India launched its first astronomical space observatory AstroSat, successfully. AstroSat carried five astronomy payloads, namely, (i) Cadmium Zinc Telluride Imager (CZTI), (ii) Large Area X-ray Proportional Counter (LAXPC), (iii) Soft X-ray Telescope (SXT), (iv) Ultra Violet Imaging Telescope (UVIT) and (v) Scanning Sky Monitor (SSM) and therefore, has the capability to observe celestial objects in multi-wavelength. Four of the payloads are co-aligned along the positive roll axis of the spacecraft and the remaining one is placed along the positive yaw axis direction. All the payloads are sensitive to bright objects and specifically, require avoiding bright Sun within a safe zone of their bore axes in orbit. Further, there are other operational constraints both from spacecraft side and payloads side which are to be strictly enforced during operations. Even on-orbit spacecraft manoeuvres are constrained to about two of the axes in order to avoid bright Sun within this safe zone and a special constrained manoeuvre is exercised during manoeuvres. The planning and scheduling of the payloads during the Performance Verification (PV) phase was carried out in semi-autonomous/manual mode and a complete automation is exercised for normal phase/Guaranteed Time Observation (GuTO) operations. The process is found to be labour intensive and several operational software tools, encompassing spacecraft sub-systems, on-orbit, domain and environmental constraints, were built-in and interacted with the scheduling tool for appropriate decision-making and science scheduling. The procedural details of the complex scheduling of a multi-wavelength astronomy space observatory and their working in PV phase and in normal/GuTO phases are presented in this paper.  相似文献   
176.
We report the in-orbit performance of Scanning Sky Monitor (SSM) onboard AstroSat. The SSM operates in the energy range 2.5 to 10 keV and scans the sky to detect and locate transient X-ray sources. This information of any interesting phenomenon in the X-ray sky as observed by SSM is provided to the astronomical community for follow-up observations. Following the launch of AstroSat on 28th September, 2015, SSM was commissioned on October 12th, 2015. The first power ON of the instrument was with the standard X-ray source, Crab in the field-of-view. The first orbit data revealed the basic expected performance of one of the detectors of SSM, SSM1. Following this in the subsequent orbits, the other detectors were also powered ON to find them perform in good health. Quick checks of the data from the first few orbits revealed that the instrument performed with the expected angular resolution of 12’ \(\times \) 2.5\(^\circ \) and effective area in the energy range of interest. This paper discusses the instrument aspects along with few on-board results immediately after power ON.  相似文献   
177.
We use the Fisher matrix formalism to predict the prospects of measuring the redshifted 21-cm power spectrum in different k-bins using observations with the upcoming Ooty Wide Field Array (OWFA) which will operate at 326.5 MHz. This corresponds to neutral hydrogen (HI) at z = 3.35, and a measurement of the 21-cm power spectrum provides a unique method to probe the large-scale structures at this redshift. Our analysis indicates that a 5σ detection of the binned power spectrum is possible in the k range 0.05 ≤ k ≤ 0.3 Mpc?1 with 1000 hours of observation. We find that the signal- to-noise ratio (SNR) peaks in the k range 0.1?0.2 Mpc?1 where a 10σ detection is possible with 2000 hours of observations. Our analysis also indicates that it is not very advantageous to observe beyond 1000 h in a single field-of-view as the SNR increases rather slowly beyond this in many of the small k-bins. The entire analysis reported here assumes that the foregrounds have been completely removed.  相似文献   
178.
The Paleoproterozoic Dhala structure with an estimated diameter of ~11 km is a confirmed complex impact structure located in the central Indian state of Madhya Pradesh in predominantly granitic basement (2.65 Ga), in the northwestern part of the Archean Bundelkhand craton. The target lithology is granitic in composition but includes a variety of meta‐supracrustal rock types. The impactites and target rocks are overlain by ~1.7 Ga sediments of the Dhala Group and the Vindhyan Supergroup. The area was cored in more than 70 locations and the subsurface lithology shows pseudotachylitic breccia, impact melt breccia, suevite, lithic breccias, and postimpact sediments. Despite extensive erosion, the Dhala structure is well preserved and displays nearly all the diagnostic microscopic shock metamorphic features. This study is aimed at identifying the presence of an impactor component in impact melt rock by analyzing the siderophile element concentrations and rhenium‐osmium isotopic compositions of four samples of impactites (three melt breccias and one lithic breccia) and two samples of target rock (a biotite granite and a mafic intrusive rock). The impact melt breccias are of granitic composition. In some samples, the siderophile elements and HREE enrichment observed are comparable to the target rock abundances. The Cr versus Ir concentrations indicate the probable admixture of approximately 0.3 wt.% of an extraterrestrial component to the impact melt breccia. The Re and Os abundances and the 187Os/188Os ratio of 0.133 of one melt breccia specimen confirm the presence of an extraterrestrial component, although the impactor type characterization still remains inconclusive.  相似文献   
179.
Here we report an in-depth reanalysis of an article by Vats et al. (Astrophys. J. 548, L87, 2001) that was based on measurements of differential rotation with altitude as a function of observing frequencies (as lower and higher frequencies indicate higher and lower heights, respectively) in the solar corona. The radial differential rotation of the solar corona is estimated from daily measurements of the disc-integrated solar radio flux at 11 frequencies: 275, 405, 670, 810, 925, 1080, 1215, 1350, 1620, 1755, and 2800 MHz. We use the same data as were used in Vats et al. (2001), but instead of the twelfth maxima of autocorrelograms used there, we use the first secondary maximum to derive the synodic rotation period. We estimate synodic rotation by Gaussian fit of the first secondary maximum. Vats et al. (2001) reported that the sidereal rotation period increases with increasing frequency. The variation found by them was from 23.6 to 24.15 days in this frequency range, with a difference of only 0.55 days. The present study finds that the sidereal rotation period increases with decreasing frequency. The variation range is from 24.4 to 22.5 days, and the difference is about three times larger (1.9 days). However, both studies give a similar rotation period at 925 MHz. In Vats et al. (2001) the Pearson’s factor with trend line was 0.86, whereas present analysis obtained a \({\sim}\,0.97\) Pearson’s factor with the trend line. Our study shows that the solar corona rotates more slowly at higher altitudes, which contradicts the findings reported in Vats et al. (2001).  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号