首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   10篇
  国内免费   3篇
测绘学   14篇
大气科学   12篇
地球物理   48篇
地质学   135篇
海洋学   6篇
天文学   34篇
综合类   4篇
自然地理   4篇
  2022年   5篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   17篇
  2017年   17篇
  2016年   24篇
  2015年   8篇
  2014年   18篇
  2013年   15篇
  2012年   19篇
  2011年   15篇
  2010年   12篇
  2009年   24篇
  2008年   19篇
  2007年   12篇
  2006年   11篇
  2005年   6篇
  2004年   9篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
11.
Singular Value Decomposition (SVD) model is implemented to recognize the Total Electron Content (TEC) time series of daily, temporal as well as seasonal characteristics throughout the 24th solar cycle period of the year 2015 in the study. The Vertical (vTEC) analysis has been carried out with Global Positioning System (GPS) data sets collected from five stations from India namely GNT, Guntur (16.44° N, 80.62° E), and IISC, Bangalore (12.97° N, 77.59° E), LCK2, Lucknow (26.76° N, 80.88° E), one station from Thailand namely AITB, Bangkok (14.07° N, 100.61° E), and one station from South Andaman Island namely PBR, Port Blair (11.43° N, 92.43° E), located in low latitude region. The first five singular value modes constitute about 98% of the total variance, which are linearly transformed from the observed TEC data sets. So it is viable to decrease the number of modeling parameters. The Fourier Series Analysis (FSA) is carried out to characterize the solar-cycle, annual and semi-annual dependences through modulating the first three singular values by the solar (F10.7) and geomagnetic (Ap) indices. The positive correlation coefficient (0.75) of daily averaged GPS–TEC with daily averaged F10.7 strongly supports the temporal variations of the ionospheric features depends on the solar activity. Further, the significance and reliability of the SVD model is evaluated by comparing it with GPS–TEC data and the standard global model (Standard Plasma-Spherical Ionospheric Model, SPIM and International Reference Ionosphere, IRI 2016).  相似文献   
12.
Natural Hazards - In a globally competitive market, companies attempt to foresee the occurrences of any catastrophe that may cause disruptions in their supply chains. Indian subcontinent is prone...  相似文献   
13.
Subansiri?CRanganadi Doab (confluence country), located in Lakhimpur district, Assam, is one of the worst flood-affected areas in Brahmaputra valley. The Doab is well populated, and land around these rivers is extensively used for cultivation. As means of flood protection, embankments were constructed in the 1950s along the banks of both the rivers. On the other hand, these rivers are dynamic in terms of banklines and other forms of channel changes. Progressive migration of bankline, due to erosion, results in loss of cultivable land. Moreover, it causes breaches in the embankments increasing the severity of flood in the Doab. This paper attempts to study the changes in the banklines of two major rivers in the floodplains of the Subansiri?CRanganadi Doab during 1997?C2009 in the context of the riverine hazards it brings to the floodplain dwellers. The shift of the banklines in Subansiri?CRanganadi Doab, downstream of North Lakhimpur, has been estimated using IRS LISS imageries of 1997 and 2009 in GIS environment. The river Subansiri during the study period has migrated westward and has widened substantially resulting in erosion of an area of ~19.137?km2. For Ranganadi, the total area that has been eroded due to channel changes is ~0.897?km2. The channel changes are mainly due to concave bank erosion associated with high stages of flow. Channel widening in Subansiri and Ranganadi in the study area during the decades of 1990s and 2000 has led to frequent breaches in the embankments. Lateral erosion and inundation due to embankment failure are the most dominant facets of riverine hazards in the study area as these lead to loss of livelihood. Therefore, it is necessary to incorporate geomorphic changes in formulating flood management programmes.  相似文献   
14.
Sago industry is one of the major small-scale sectors in India and over 800 units are located in the southern State of Tamilnadu. Processing of sago generates enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. The present study is an attempt to treat the sago wastewater using Hybrid Upflow Anaerobic Sludge Blanket (HUASB) reactor, which offers the advantages of both fixed film and up flow anaerobic sludge blanket treatment. HUASB reactor with a volume of 5.6 L was operated at Organic Loading Rates varying from 10.7 to 24.7 kg COD/m3.day. After 130 days of startup, the reactor produced appreciable decrease in COD of wastewater and removed solids efficiently. The COD removal varied from 91–87%. While the removal of Total Solids was in the range of 61–57%, that of volatile solids varied from 70–67%. The ideal OLR for the reactor was 23.5 kg COD/m3.day. The findings of the study open up newer possibilities of design low cost and compact onsite treatment systems with very short retention periods.  相似文献   
15.
Indian Ocean subduction zone is one of the most active plate margins of the globe as evident from its vast record of great magnitude earthquake and tsunami events. We use Bouguer admittance (Morlet isostatic response function) in Sumatra-Java subduction zones comprising both the subduction and over-riding plates to determine the lithospheric mechanical strength variations. We determine effective elastic thickness (T e ) for five oceanic windows (size 990 × 990 km2) by analyzing the admittance using Bouguer gravity and bathymetry data. The results show bimodal T e values < 20 km for Sumatra and 20−40 km for Java. The lower bimodal values obtained for Sumatra appears to correlate well with the zones of historical seismicity. This is in sharp contrast with Java subduction zone, which shows higher T e values (20–40 km) and apparently associated with low magnitude earthquakes. We suggest a strong and wide interseismic coupling for Sumatra between the subducting and over-riding plates, and deeper mantle contributing to low strength, shallow focus — high magnitude seismicity and vice versa for Java, leading to their seismogenic zonation.  相似文献   
16.

Debris flow has caused severe human casualties and economic losses in landslide-prone areas around the globe. A comprehensive understanding of the morphology and deposition mechanisms of debris flows is crucial to delineate the extent of a debris flow hazard. However, due to inherent complex field topography and varying compositions of the flowing debris, coupled with a lack of fundamental understanding about the factors controlling the geomaterial flow, interparticle interactions and its final settlement resulted in a limited understanding of the flow behaviour of the landslide debris. In this study, a physical model was set up in the laboratory to simulate and calibrate the debris flow using PFC, a distinct element modelling-based software. After calibration, a case study of the Varunavat landslide was taken to validate the developed numerical model. Following validation with an acceptable level of confidence, several models were generated to evaluate the effect of slope height, slope angle, slope profile, and grain size distribution of the dislodged geomaterial in the rheological properties of debris flow. Both qualitative and quantitative analysis of the landslide debris flow was performed. Finally, the utility of retaining wall and their effect on debris flow is also studied with different retaining wall positions along the slope surface.

  相似文献   
17.
This paper discusses the situation of sea navigation in south East Asia focusing on the Strait of Malacca. The strait links the Indian and Pacific oceans, which is considered one of the busiest in several narrow channels around the world. The paper highlights the significance of the strait to global maritime trade, volume of traffic, and rising environmental and social consequences in the strait. A feasibility study of constructing a new shipping canal in the South Thai Kra Isthmus as an alternative option of Malacca route had been studied since 19th century. The paper explores suitable sites for a potential shipping canal in the Kra Isthmus using physiographic spatial data i.e., elevation, sea charts, geology, soils and river systems. Each spatial data was considered as a separate decision variable for site evaluation. Separate evaluation criterions were prepared for each variable based on shipping canal requirements. Overlaying the maps in GIS environment, the variables were carefully evaluated, and five geographic sites for the canal were derived. The length of the shipping canal over sea and land was computed for each site. Site B located in south of Ranong and Chumphon provinces, was the shortest one, whereas site C in Surat Thani, Pangnna and Krabi provinces was the longest. However, each site consisted of benefits and constraints.  相似文献   
18.
19.
Reaction textures and fluid inclusions in the~2.0 Ga pyroxene-bearing dehydration zones within the Sand River biotite-hornblende orthogneisses(Central Zone of the Limpopo Complex) suggest that the formation of these zones is a result of close interplay between dehydration process along ductile shear zones triggered by H2O-CO2-salt fluids at 750—800℃and 5.5—6.2 kbar.partial melting,and later exsolution of residual brine and H2O-CO2 fluids during melt crystallization at 650—700℃.These processes caused local variations of water and alkali activity in the fluids,resulting in various mineral assemblages within the dehydration zone.The petrological observations are substantiated by experiments on the interaction of the Sand River gneiss with the H2O-CO-2-(K,Na)Cl fluids at 750 and 800℃and 5.5 kbar.It follows that the interaction of biotite-amphibole gneiss with H2O-CO2-(K.Na)Cl fluids is accompanied by partial melting at 750—800℃.Orthopyroxene-bearing assemblages are characteristic for temperature 800℃and are stable in equilibrium with fluids with low salt concentrations,while salt-rich fluids produce clinopyroxene-bearing assemblages.These observations arc in good agreement with the petrological data on the dehydration zones within the Sand River orthoeneisses.  相似文献   
20.
In 2013, Indian summer monsoon witnessed a very heavy rainfall event (>30 cm/day) over Uttarakhand in north India, claiming more than 5000 lives and property damage worth approximately 40 billion USD. This event was associated with the interaction of two synoptic systems, i.e., intensified subtropical westerly trough over north India and north-westward moving monsoon depression formed over the Bay of Bengal. The event had occurred over highly variable terrain and land surface characteristics. Although global models predicted the large scale event, they failed to predict realistic location, timing, amount, intensity and distribution of rainfall over the region. The goal of this study is to assess the impact of land state conditions in simulating this severe event using a high resolution mesoscale model. The land conditions such as multi-layer soil moisture and soil temperature fields were generated from High Resolution Land Data Assimilation (HRLDAS) modelling system. Two experiments were conducted namely, (1) CNTL (Control, without land data assimilation) and (2) LDAS, with land data assimilation (i.e., with HRLDAS-based soil moisture and temperature fields) using Weather Research and Forecasting (WRF) modelling system. Initial soil moisture correlation and root mean square error for LDAS is 0.73 and 0.05, whereas for CNTL it is 0.63 and 0.053 respectively, with a stronger heat low in LDAS. The differences in wind and moisture transport in LDAS favoured increased moisture transport from Arabian Sea through a convectively unstable region embedded within two low pressure centers over Arabian Sea and Bay of Bengal. The improvement in rainfall is significantly correlated to the persistent generation of potential vorticity (PV) in LDAS. Further, PV tendency analysis confirmed that the increased generation of PV is due to the enhanced horizontal PV advection component rather than the diabatic heating terms due to modified flow fields. These results suggest that, two different synoptic systems merged by the strong interaction of moving PV columns resulted in the strengthening and further amplification of the system over the region in LDAS. This study highlights the importance of better representation of the land surface fields for improved prediction of localized anomalous weather event over India.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号