首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   3篇
  国内免费   2篇
测绘学   4篇
大气科学   5篇
地球物理   17篇
地质学   70篇
海洋学   3篇
天文学   20篇
自然地理   4篇
  2022年   1篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   8篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   2篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   9篇
  2007年   8篇
  2006年   1篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有123条查询结果,搜索用时 328 毫秒
71.
72.
We document compositions of minerals and melts from 3 GPa partialmelting experiments on two carbonate-bearing natural lherzolitebulk compositions (PERC: MixKLB-1 + 2·5 wt% CO2; PERC3:MixKLB-1 + 1 wt% CO2) and discuss the compositions of partialmelts in relation to the genesis of alkalic to highly alkalicocean island basalts (OIB). Near-solidus (PERC: 1075–1105°C;PERC3: 1050°C) carbonatitic partial melts with <10 wt%SiO2 and 40 wt% CO2 evolve continuously to carbonated silicatemelts with >25 wt% SiO2 and <25 wt% CO2 between 1325 and1350°C in the presence of residual olivine, orthopyroxene,clinopyroxene, and garnet. The first appearance of CO2-bearingsilicate melt at 3 GPa is 150°C cooler than the solidusof CO2-free peridotite. The compositions of carbonated silicatepartial melts between 1350 and 1600°C vary in the rangeof 28–46 wt% SiO2, 1·6–0·5 wt% TiO2,12–10 wt% FeO*, and 19–29 wt% MgO for PERC, and42–48 wt% SiO2, 1·9–0·5 wt% TiO2,10·5–8·4 wt% FeO*, and 15–26 wt% MgOfor PERC3. The CaO/Al2O3 weight ratio of silicate melts rangesfrom 2·7 to 1·1 for PERC and from 1·7 to1·0 for PERC3. The SiO2 contents of carbonated silicatemelts in equilibrium with residual peridotite diminish significantlywith increasing dissolved CO2 in the melt, whereas the CaO contentsincrease markedly. Equilibrium constants for Fe*–Mg exchangebetween carbonated silicate liquid and olivine span a rangesimilar to those for CO2-free liquids at 3 GPa, but diminishslightly with increasing dissolved CO2 in the melt. The carbonatedsilicate partial melts of PERC3 at <20% melting and partialmelts of PERC at 15–33% melting have SiO2 and Al2O3 contents,and CaO/Al2O3 values, similar to those of melilititic to basaniticalkali OIB, but compared with the natural lavas they are moreenriched in CaO and they lack the strong enrichments in TiO2characteristic of highly alkalic OIB. If a primitive mantlesource is assumed, the TiO2 contents of alkalic OIB, combinedwith bulk peridotite/melt partition coefficients of TiO2 determinedin this study and in volatile-free studies of peridotite partialmelting, can be used to estimate that melilitites, nephelinites,and basanites from oceanic islands are produced from 0–6%partial melting. The SiO2 and CaO contents of such small-degreepartial melts of peridotite with small amounts of total CO2can be estimated from the SiO2–CO2 and CaO–CO2 correlationsobserved in our higher-degree partial melting experiments. Thesesuggest that many compositional features of highly alkalic OIBmay be produced by 1–5% partial melting of a fertile peridotitesource with 0·1–0·25 wt% CO2. Owing to verydeep solidi of carbonated mantle lithologies, generation ofcarbonated silicate melts in OIB source regions probably happensby reaction between peridotite and/or eclogite and migratingcarbonatitic melts produced at greater depths. KEY WORDS: alkali basalts; carbonated peridotite; experimental petrology; ocean island basalts; partial melting  相似文献   
73.
In this paper, we compare the petrological histories of the Kemp Land Coast (east Antarctica), and Gokavaram area (Eastern Ghats), that were supposed to have been juxtaposed. The area around Gokavaram is dominated by different varieties of paragneisses (pelitic, quartzofeldspathic, and calcareous composition) with relatively minor amounts of orthogneisses (mafic, enderbitic, and granitic composition). The rocks were involved in three major phases of deformation, and were finally affected by localised shear movement. On the basis of reaction textures, well preserved in high Mg-Al granulites, and calc-silicate granulites, and geothermobarometric data we deduce a polymetamorphic evolution of the rocks. Following an early M1 metamorphism culminating at 9.2–9.4 kbar, > 950°C, the rocks cooled nearly isobarically down to 850°C. During a subsequent M2 metamorphism, near isothermal decompression to 5–6 kbar occurred. This was followed by near isobaric cooling down to 600–650°C. M3 is a weak amphibolite facies overprint, largely restricted to late shears, which involved hydration as well. Available radiometric data from this area can be interpreted in terms of partial resetting of U-Pb systematics in older sphenes due to M3 metamorphism at ca. 550 Ma. Despite the absence of sufficient isotopic data on the Eastern Ghats granulites, we document a remarkable similarity in the petrological history of the two supposedly erstwhile neighbours.  相似文献   
74.
The Burmese Arc seismic activity is not uniform for its ∼ 1100 km length; only the Northern Burmese Arc (NBA) is intensely active. Six large earthquakes in the magnitude range 6.1–7.4 have originated from the NBA Benioff zone between 1954–2011, within an area of 200 × 300 km2 where the Indian plate subducts eastward to depths beyond 200 km below the Burma plate. An analysis on seismogenesis of this interplate region suggests that while the subducting lithosphere is characterized by profuse seismicity, seismicity in the overriding plate is rather few. Large earthquakes occurring in the overriding plate are associated with the backarc Shan-Sagaing Fault (SSF) further east. The forecasting performance of the Benioff zone earthquakes in NBA as forerunner is analysed here by: (i) spatial earthquake clustering, (ii) seismic cycles and their temporal quiescence and (iii) the characteristic temporal b-value changes. Three such clusters (C1–C3) are identified from NBA Benioff Zones I & II that are capable of generating earthquakes in the magnitude ranges of 7.38 to 7.93. Seismic cycles evidenced for the Zone I displayed distinct quiescence (Q1, Q2 and Q3) prior to the 6th August 1988 (M 6.6) earthquake. Similar cycles were used to forecast an earthquake (Dasgupta et al. 2010) to come from the Zone I (cluster C1); which, actually struck on 4 February 2011 (M 6.3). The preparatory activity for an event has already been set in the Zone II and we speculate its occurrence as a large event (M > 6.0) possibly within the year 2012, somewhere close to cluster C3. Temporal analysis of b-value indicates a rise before an ensuing large earthquake.  相似文献   
75.
现代酸性矿山废水(AMD)环境被认为是地球早期环境的理想对应物.AMD的水环境具有金属含量高、pH低的特点,这与太古代-早元古代时期海洋的某些环境条件十分类似.然而,尽管AMD的环境条件恶劣,但仍然栖息着非常丰富的原核和真核微生物,在这其中那些嗜酸的、营光合作用的真核微生物类群(特别是Euglena mutabilis)更是引起众多科学家极大的研究兴趣.本文全面概述了在AMD环境中发现的真核微生物Euglenids种群的生物化学、生理学和生物地球化学特征,以及这些特征对于理解生命演化和早期地球环境条件等方面的指示性作用.Euglenids的细胞具备区域化功能,因而具备需氧和厌氧的蜡酯和甾醇的双生物合成途径,同时它们还可以形成生物膜,所有这些均使得Euglenids能够在早期地球极端恶劣的环境条件下生存并持续演化.在AMD酸性环境中发育的富铁叠层石、嗜酸微生物的脂类化合物及其碳同位素比值以及它们独特的生理和生化特征可用于阐述真核生物的演化、地球早期大气中氧气的产生、条带状富铁建造的形成以及地球早期的环境演化等.  相似文献   
76.
77.
Eukaryotic phytoplankton such as diatoms and prymnesiophytes produce biogenic halocarbons in the ocean that serve as important sources of chlorine and bromine to the atmosphere, but the role of cyanobacteria in halocarbon production is not well established. We studied distributions of chloroform (CHCl3), carbon tetrachloride (CCl4), methylene bromide (CH2Br2) and bromoform (CHBr3) in relation to phytoplankton composition, determined from pigment analysis complemented by microscopic examination, for one month in coastal waters of the eastern Arabian that experienced a Trichodesmium bloom that typically occurs during the Spring Intermonsoon season. High concentrations of zeaxanthin (23 μg l−1), alpha beta betacarotene (6 μg l−1) and chlorophyll a (67 μg l−1) were found within the bloom whereas the marker pigment concentrations were low outside the bloom. CHCl3 and CCl4 occurred in relatively high concentrations in surface waters whereas CH2Br2 and CHBr3 were restricted to the subsurface layer. Chlorinated halocarbons were positively inter-correlated and with CHBr3. The observed spatial and temporal trends in brominated compounds appear to be related to the abundance of Trichodesmium although correlations between concentrations of brominated compounds with various marker pigments were poor and statistically non-significant. The results support the existence of multiple sources and sinks of halogenated compounds, which might obscure the relationship between halocarbons and phytoplankton composition.  相似文献   
78.
The metapelitic rocks of the Sikkim Himalayas show an inverted metamorphic sequence (IMS) of the complete Barrovian zones from chlorite to sillimanite + K‐feldspar, with the higher grade rocks appearing at progressively higher structural levels. Within the IMS, four groups of major planar structures, S1, S2 and S3 were recognised. The S2 structures are pervasive throughout the Barrovian sequence, and are sub‐parallel to the metamorphic isograds. The mineral growth in all zones is dominantly syn‐S2. The disposition of the metamorphic zones and structural features show that the zones were folded as a northerly plunging antiform. Significant bulk compositional variation, with consequent changes of mineralogy, occurs even at the scale of a thin section in some garnet zone rocks. The results of detailed petrographic and thermobarometric studies of the metapelites along a roughly E–W transect show progressive increase of both pressure and temperature with increasing structural levels in the entire IMS. This is contrary to all models that call for thermal inversion as a possible reason for the origin of the IMS. Also, the observation of the temporal relation between crystallization and S2 structures is problematic for models of post‐/late‐metamorphic tectonic inversion by recumbent folding or thrusting. A successful model of the IMS should explain the petrological coherence of the Barrovian zones and the close relationship of crystallization in each zone with S2 planar structures along with the observed trend(s) of P–T variation in Sikkim and in other sections. A discussion is presented of some of the available models that, with some modifications, seem to be capable of explaining these observations.  相似文献   
79.
Tectonism in the Himalayan fold-thrust belt had generated great earthquakes in the past and will spawn more in the future. Sequential cumulative moment release data of macroearthquakes (Mb ≥ 4.5) over the years 1964–2006 in four zones of the Himalaya was analysed by nonparametric RUD method. The Z values of RUD analysis had neither rejected nor supported the null hypothesis of randomness. However, the Hurst analysis and plot, a statistical procedure to identify clustering of low and high values in a time series, brought out a pattern for earthquake prognostication. The pattern was a negative sloping segment representing a sluggish moment release over years, followed by a positive sloping segment indicating a sudden high moment release with occurrence of medium/large size earthquake(s). In recent past, such a negative sloping has been found in Zones B (1992–2006) and D (1998–2006), indicating an impending moderate/mega earthquake event in near future.  相似文献   
80.
Serpentinization is pervasive in the ultramafic rocks of Manipur ophiolite belt (MOB), Northeastern India. Electron microprobe data of a serpentinite from the Ukhrul-Nungbi sector of MOB shows Ni-rich serpentine mineral (NiO = 33.4-33.9 wt %, SiO2= 37.55-38.96 wt %, MgO= 14.83-16.89 wt %). The composition and X-ray diffraction pattern characterize this Ni-rich serpentine mineral as népouite which is suggested to be a hydrothermal alteration product of NiO-rich olivine in a fore-arc peridotite. The genesis of this NiO-rich olivine is attributed to the melt-rock interaction in a supra-subduction zone setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号