首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   23篇
  国内免费   4篇
测绘学   11篇
大气科学   10篇
地球物理   130篇
地质学   119篇
海洋学   29篇
天文学   45篇
综合类   1篇
自然地理   20篇
  2023年   6篇
  2022年   4篇
  2021年   12篇
  2020年   12篇
  2019年   11篇
  2018年   12篇
  2017年   15篇
  2016年   27篇
  2015年   20篇
  2014年   14篇
  2013年   15篇
  2012年   20篇
  2011年   18篇
  2010年   19篇
  2009年   17篇
  2008年   23篇
  2007年   19篇
  2006年   11篇
  2005年   7篇
  2004年   14篇
  2003年   8篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   2篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有365条查询结果,搜索用时 31 毫秒
61.
We introduce a multi-domain decomposition Fourier finite element (MDDFFE) method for the simulation of three-dimensional (3D) marine controlled source electromagnetic measurement (CSEM). The method combines a 2D finite element (FE) method in two spatial dimensions with a hybrid discretization based on a Fourier FE method along the third dimension. The method employs a secondary field formulation rather than the total field formulation. We apply the MDDFFE method to several synthetic marine CSEM examples exhibiting bathymetry and/or multiple 3D subdomains. Numerical results show that the use of the MDDFFE method reduces the problem size by as much as 87 % in terms of the number of unknowns, without any sacrifice in accuracy.  相似文献   
62.
International Journal of Earth Sciences - The Southern Brasília Orogen is a Neoproterozoic belt that occurs along the southernmost border of the São Francisco Craton where the...  相似文献   
63.
The impossibility of observing magma migration inside the crust obliges us to rely on geophysical data and mathematical modelling to interpret precursors and to forecast volcanic eruptions. Of the geophysical signals that may be recorded before and during an eruption, deformation and seismicity are two of the most relevant as they are directly related to its dynamic. The final phase of the unrest episode that preceded the 2011–2012 eruption on El Hierro (Canary Islands) was characterized by local and accelerated deformation and seismic energy release indicating an increasing fracturing and a migration of the magma. Application of time varying fractal analysis to the seismic data and the characterization of the seismicity pattern and the strain and the stress rates allow us to identify different stages in the source mechanism and to infer the geometry of the path used by the magma and associated fluids to reach the Earth’s surface. The results obtained illustrate the relevance of such studies to understanding volcanic unrest and the causes that govern the initiation of volcanic eruptions.  相似文献   
64.
When fine particles are involved, cohesive properties of sediment can result in flocculation and significantly complicate sediment process studies. We combine data from field observations and state-of-the-art modeling to investigate and predict flocculation processes within a hypertidal estuary. The study site is the Welsh Channel located at the entrance of the Dee Estuary in Liverpool Bay. Field data consist of measurements from a fixed site deployment during 12–22 February 2008. Grain size, suspended sediment volume concentration, and current velocity were obtained hourly from moored instruments at 1.5 m above bed. Near-bottom water samples taken every hour from a research vessel are used to convert volume concentrations to mass concentrations for the moored measurements. We use the hydrodynamic model Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) coupled with the turbulence model General Ocean Turbulence Model (GOTM) and a sediment module to obtain three-dimensional distributions of suspended particulate matter (SPM). Flocculation is identified by changes in grain size. Small flocs were found during flood and ebb periods—and correlate with strong currents—due to breakup, while coarse flocs were present during slack waters because of aggregation. A fractal number of 2.4 is found for the study site. Turbulent stresses and particle settling velocities are estimated and are found to be related via an exponential function. The result is a simple semiempirical formulation for the fall velocity of the particles solely depending on turbulent stresses. The formula is implemented in the full three-dimensional model to represent changes in particle size due to flocculation processes. Predictions from the model are in agreement with observations for both settling velocity and SPM. The SPM fortnight variability was reproduced by the model and the concentration peaks are almost in phase with those from field data.  相似文献   
65.
Changes in wandering beetle assemblages (Carabidae and Tenebrionidae) of different habitats situated in coastal wetlands of a Mediterranean arid area (Mar Menor, SE Spain) were analysed in 1984, 1992 and 2003 by pitfall trapping. Over two decades, the increase in irrigated lands at watershed scale led to rising water tables in the Mar Menor wetlands, which affected their beetle communities. These hydrological changes caused an increase in the carabid population, particularly in the sites most affected by flooding, where halobionts and halophiles, which were practically absent in 1984 and 1992, had become dominant by 2003. In contrast, tenebrionid assemblages simplified with time and by 2003 were dominated by one or two generalist species.  相似文献   
66.
67.
Spatial variability in lithobiont‐induced weathering patterns on desert rocks is aspect‐dependent. While differences between the northern and southern aspects have been extensively studied, little is known concerning the differences between east‐facing (EF) and west‐facing (WF) aspects in deserts, including the Negev Desert. Whereas cobbles on both slopes are inhabited by endolithic lichens, epilithic lichens, which render the bedrock a smooth appearance, and free‐living cyanobacteria, which give the bedrock a rugged microrelief, predominate on WF and EF bedrock, respectively. Following previous research that regarded dew as the principal factor that determines lithobiont distribution, measurements of radiation, temperature, wind and dew were carried out during 2008–2009 in the Negev Desert. The data indicated that albeit slightly higher midday surface temperatures that characterize WF surfaces (cobbles and bedrock), nocturnal temperatures on these surfaces were significantly lower, therefore facilitating higher dew condensation. High amounts of dew result from the relatively rapid drop in temperatures (14:00–20:00) due to the afternoon northwesterly sea‐breeze wind (with a cooling rate of the WF bedrock being 52.9% higher than on EF bedrock, 2.6 °C h?1 in comparison to only 1.7 °C h?1), and facilitate the growth of high‐chlorophyll dew‐fed (and rain‐fed) epilithic lichens, which may act as bio‐protectors on WF bedrock. Lack of condensation on EF bedrock results in turn in the growth of rain‐fed free‐living cyanobacteria, responsible for high rock dissolution and subsequently for a rugged microrelief. By affecting the nocturnal bedrock temperatures, wind acts as a cooling agent, impacting in turn the amount of dew, and subsequently lithobiont composition and weathering patterns in the Negev Desert. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
68.
The assessment of the effectiveness of mass dampers for the Chilean region within a multi-objective decision framework utilizing life-cycle performance criteria is considered in this paper. The implementation of this framework focuses here on the evaluation of the potential as a cost-effective protection device of a recently proposed liquid damper, called tuned liquid damper with floating roof (TLD-FR). The TLD-FR maintains the advantages of traditional tuned liquid dampers (TLDs), i.e. low cost, easy tuning, alternative use of water, while establishing a linear and generally more robust/predictable damper behavior (than TLDs) through the introduction of a floating roof. At the same time it suffers (like all other liquid dampers) from the fact that only a portion of the total mass contributes directly to the vibration suppression, reducing its potential effectiveness when compared to traditional tuned mass dampers. A life-cycle design approach is investigated here for assessing the compromise between these two features, i.e. reduced initial cost but also reduced effectiveness (and therefore higher cost from seismic losses), when evaluating the potential for TLD-FRs for the Chilean region. Leveraging the linear behavior of the TLD-FR a simple parameterization of the equations of motion is established, enabling the formulation of a design framework that beyond TLDs-FR is common for other type of linear mass dampers, something that supports a seamless comparison to them. This framework relies on a probabilistic characterization of the uncertainties impacting the seismic performance. Quantification of this performance through time-history analysis is considered and the seismic hazard is described by a stochastic ground motion model that is calibrated to offer hazard-compatibility with ground motion prediction equations available for Chile. Two different criteria related to life-cycle performance are utilized in the design optimization, in an effort to support a comprehensive comparison between the examined devices. The first one, representing overall direct benefits, is the total life-cycle cost of the system, composed of the upfront device cost and the anticipated seismic losses over the lifetime of the structure. The second criterion, incorporating risk-averse concepts into the decision making, is related to consequences (repair cost) with a specific probability of exceedance over the lifetime of the structure. A multi-objective optimization is established and stochastic simulation is used to estimate all required risk measures. As an illustrative example, the performance of different mass dampers placed on a 21-story building in the Santiago area is examined.  相似文献   
69.
In this work, we report diffusion-limited aggregation (DLA)-type Montecarlo computations of a stochastic model of displacement of a viscous fluid by another that preferentially wets a porous medium, for the case when both fluids are immiscible in the absence of buoyancy forces. The model has the aim to simulate cooperative invasion processes found in experiments of immiscible wetting displacement. The model considers the nonlocal effects of the Laplacian pressure field and the capillary forces via hydrodynamic equations in the Darcy regime with a boundary condition for the pressure at the interface. The boundary condition contains two different types of disorder: the capillary term, which constitutes an additive random disorder, and a term containing an effective random surface tension, which couples to a curvature (it constitutes a multiplicative random term that carries nonlocal information of the whole pressure). We generate different displacement patterns for different setting of the parameters of the model. We analyze these patterns by studying the scaling properties of the interface that separate the two fluids and calculating the fractal dimension of the interface. The results show the existence of three distinct regimes of scaling. One regime at the smallest-length scales is due to the multiplicative random disorder together with the nonlocal coupling; it reveals itself in a roughness exponent α ≈ 0.80. Additionally, we find a DLA-type scaling regime with a roughness exponent α ≈ 0.60 at the largest scales and intermediate scaling regime with α ≈ 0.70 corresponding to invasion percolation with trapping. Each regime has definite scaling ranges that depend on the capillary number and the relative wetting tendency of the fluids. The behavior of the fractal dimensions of the interfaces of the aggregates constitutes a further confirmation of the existence of three scaling regimes and the multi-self-affinity of the perimeter of the interface boundaries.  相似文献   
70.
The Markermeer is a large and shallow man-made freshwater lake in the Netherlands, characterized by its high turbidity. As part of a study aiming to mitigate this high turbidity, we studied the water–bed exchange processes of the lake’s muddy bed. The upper centimeter’s–decimeter’s of the lake bed sediments mainly consists of soft anoxic mud. Recent measurements have proved the existence of a thin oxic layer on top of this soft anoxic mud. This oxic layer, which is much easier to be eroded than the anoxic mud, is believed to be related with Markermeer’s high-turbidity levels. Our hypothesis is that the thin oxic layer develops from the anoxic mud, enhanced by bioturbation. Actually, we will demonstrate that it is the bioturbated state of the bed that increases its erodability, and not the oxidation state of the sediments. In particular, we will refer to bioturbation caused by meiobenthic fauna. The objective of this study is therefore to determine the influence of the development of the thin oxic layer on the water–bed exchange processes, as well as to establish the role of bioturbation on those processes. This is done by quantifying the erosion rate as a function of bed shear stresses, and at different stages of the development of the oxic layer. Our experiments show that bioturbation increases the rate at which Markermeer sediments are eroded by almost an order of magnitude. The short-term fine sediment dynamics in Markermeer are found to be driven by the complex and highly dynamic interactions between physics, chemistry, and biology. Finally, the long-term fine sediment dynamics are driven by the erosion of the historical deposits in the lake’s bed, which is only possible after bioturbation, and which leads to an increase of the stock of sediments in the lake’s muddy bed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号