首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   0篇
测绘学   1篇
大气科学   9篇
地球物理   7篇
地质学   125篇
海洋学   6篇
天文学   2篇
自然地理   15篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   8篇
  2009年   2篇
  2008年   12篇
  2007年   7篇
  2006年   8篇
  2005年   11篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1998年   6篇
  1997年   9篇
  1996年   10篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   10篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
  1963年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
21.
The pressure dependence of the zirconium-in-rutile thermometer   总被引:19,自引:1,他引:19  
The solubility of ZrO2 in rutile is strongly temperature-dependent and has been identified as a potentially powerful thermometer when the rutile coexists with an appropriate buffer assemblage, e.g. zircon + quartz. In combination with experimental data at 10 kbar, previous consideration of data on natural rutile has not identified a pressure dependence for the thermometer. However, the expected volume change as a result of substitution of the larger Zr4+ cation for Ti4+ suggests that the Zr content of rutile should decrease with increasing pressure. To investigate the pressure dependence of the thermometer, piston cylinder (at 10, 20 & 30 kbar) and 1 atm furnace experiments were performed in the system ZrO2-TiO2-SiO2. The solubility of ZrO2 in rutile, in the presence of zircon and quartz was reversed at each pressure value. From these experiments, the thermodynamics of the end-member reaction ZrSiO4 = SiO2 + ZrO2 (in rutile) have been determined. There is a secondary pressure effect accompanying the primary temperature dependence of the Zr content of rutile. New thermometer equations are, in the α -quartz field: in the β -quartz field and in the coesite field in which φ is ppm Zr, P is in kbar and R is the gas constant, 0.0083144 kJ K−1. Thermometric results using these equations are shown for a range of geological settings.  相似文献   
22.
23.
24.
A calibration is presented for an activity–composition model for amphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O (NCFMASHO), formulated in terms of an independent set of six end‐members: tremolite, tschermakite, pargasite, glaucophane, ferroactinolite and ferritschermakite. The model uses mixing‐on‐sites for the ideal‐mixing activities, and for the activity coefficients, a macroscopic multicomponent van Laar model. This formulation involves 15 pairwise interaction energies and six asymmetry parameters. Calibration of the model is based on the geometrical constraints imposed by the size and shape of amphibole solvi inherent in a data set of 71 coexisting amphibole pairs from rocks, formed over 400–600 °C and 2–18 kbar. The model parameters are calibrated by combining these geometric constraints with qualitative consideration of parameter relationships, given that the data are insufficient to allow all the model parameters to be determined from a regression of the data. Use of coexisting amphiboles means that amphibole activity–composition relationships are calibrated independently of the thermodynamic properties of the end‐members. For practical applications, in geothermobarometry and the calculation of phase diagrams, the amphibole activity–composition relationships are placed in the context of the stability of other minerals by evaluating the properties of the end‐members in the independent set that are in internally consistent data sets. This has been performed using an extended natural data set for hornblende–garnet–plagioclase–quartz, giving the small adjustments necessary to the enthalpies of formation of tschermakite, pargasite and glaucophane for working with the Holland and Powell data set.  相似文献   
25.
In the Laouni region (Central Hoggar, Algeria), retrogression of high-grade orthopyroxene–cordierite-bearing rocks led to the crystallization of orthoamphibole and garnet, and at a later stage of chlorite, from the original paragenesis. Calculated phase diagrams show that this retrogression occurred at about 3  kbar with the simplest model involving hydration at 650–700°  C and at around 500°  C, with the rocks experiencing a H2O less than 1, except possibly in the last stages of chlorite crystallization. As the other rock types occurring in the same area as the orthopyroxene–cordierite rocks display similar features, it is concluded that regional hydration occurred, presumably related to the release of fluids during the crystallization of the Pan-African granitic and mafic magmas that are widespread in the Laouni area.  相似文献   
26.
Orthopyroxene‐rich quartz‐saturated granulites of the Strangways Range, Arunta Block, central Australia, record evidence of two high‐grade metamorphic events. Initial granulite facies metamorphism (M1, at c. 1.7 Ga) involved partial melting and migmatization culminating in conditions of 8.5 kbar and 850 °C. Preservation of the peak M1 mineral assemblages from these conditions indicates that most of the generated melt was lost from these rocks at or near peak metamorphic conditions. Subsequent reworking (M2, at c. 1.65 Ga) is characterized by intense deformation, the absence of partial melting and the development of orthopyroxene–sillimanite ± gedrite‐bearing mineral assemblages. Gedrite is only present in cordierite‐rich lithologies where it preferentially replaces M1 cordierite porphyroblasts. Pseudosection calculations indicate that M2 occurred at subsolidus fluid‐absent conditions (aH2o ~ 0.2) at 6–7.5 kbar and 670–720 °C. The mineral assemblages in the reworked rocks are consistent with closed system behaviour with respect to H2O subsequent to M1 melt loss. M2 reworking was primarily driven by increased temperature from the stable geotherm reached after cooling from M1 and deformation‐induced recrystallization and re‐equilibration, rather than rehydration from an externally derived fluid. The development of the M2 assemblages is strongly dependent on the intensity of deformation, not only for promoting equilibration, but also for equalizing the volume changes that result from metamorphic reactions. Calculations suggest that the protoliths of the orthopyroxene‐rich granulites were cordierite–orthoamphibole gneisses, rather than pelites, and that the unusual bulk compositions of these rocks were inherited from the protoliths. Melt loss is insufficient to account for the genesis of these rocks from more typical pelitic compositions. In quartz‐rich gneisses, however, melt loss along the M1 prograde path was able to modify the bulk rock composition sufficiently to stabilize peak metamorphic assemblages different from those that would have otherwise developed.  相似文献   
27.
Sandy hyperpycnal flows and their deposits, hyperpycnites, have been documented in modern environments and, more recently, in Cretaceous and Tertiary strata; they may be more common in the rock record, and within petroleum reservoirs, than has been previously thought. Muddy hyperpycnites also occur within the rock record, but these are more difficult to document because of their finer‐grained nature and lack of common sedimentary structures. This paper documents the presence of submarine slope mudstone and siltstone hyperpycnites (and muddy turbidites) in the delta‐fed, Upper Cretaceous Lewis Shale of Wyoming; based on field measurements, analyses of rock slabs and thin sections, and laser grain‐size distributions. Four lithofacies comprise laminated and thin‐bedded mudstones that are associated with levéed channel sandstones: (L1) grey, laminated, graded mudstone with thin siltstone and sandstone interbeds; (L2) dark grey to tan, laminated mudstone with very thin siltstone and sandstone stringers; (L3) light grey, laminated siltstones; and (L4) laminated mudstones and siltstones with thin sandstone interbeds. Two styles of mudstone grain‐size grading have been documented. The first type is an upward‐fining interval that typically ranges in thickness from 2·5 to 5 cm. The second type is a couplet of a lower, upward‐coarsening interval and an upper, upward‐fining interval (sometimes separated by a micro‐erosion surface) which, combined, are about 3·8 cm thick. Both individual laminae and groups of laminae spaced millimetres apart exhibit these two grain‐size trends. Although sedimentary structures indicative of traction‐plus‐fallout sedimentary processes associated with sandier hyperpycnites are generally absent in these muddy sediments, the size grading patterns are similar to those postulated in the literature for sandy hyperpycnites. Thus, the combined upward‐coarsening, then upward‐fining couplets are interpreted to be the result of a progressive increase in river discharge during waxing and peak flood stage (upward increase in grain‐size), followed by waning flow after the flood begins to abate (upward decrease in grain‐size). The micro‐erosion surface that sometimes divides the two parts of the size‐graded couplet resulted from waxing flows of sufficiently high velocity to erode the sediment previously deposited by the same flow. Individual laminae sets which only exhibit upward‐fining trends could be either the result of waning flow deposition from either dilute turbidity currents or from hyperpycnal flows. The occurrence of these sets with the size‐graded couplets suggests that they are associated with hyperpycnal processes.  相似文献   
28.
Detailed sedimentological and stratigraphical analysis coupled with conodont biostratigraphy of a fore-reef slope succession in the Napier Range (Napier Formation) is used to develop a depositional model and relative sea-level history for late Frasnian to late Famennian reef evolution in the Canning Basin of north-western Australia. Changes in sedimentary style on the slope, reflecting differing rates of carbonate production on the platform, are linked to third- and higher order relative sea-level fluctuations. Overlapping slope aprons accumulated along the base of a steep-walled platform margin. Coarse carbonate debris was deposited adjacent to the margin as talus breccias (via rockfall) and debris-flow breccias. Depositional slopes up to 45°, and locally steeper, are demonstrated using rotated geopetal cavity fills. The predominance of channel-filling lithofacies throughout the slope succession indicates the highly channelized nature of the aprons. The middle slope is dominated by sandy oolitic-peloidal turbiditic grainstones interpreted as sediment exported from an active platform. The turbidites and associated debris-flow breccias contrast with condensed carbonate intervals and deep-water, non-fenestral stromatolites that record times of very low platform production. Lower slope turbidites and associated intraclastic breccias indicate widespread redeposition of sediment eroded from lithified and semi-lithified limestones higher up the slope. Several third-order sequences are recognized in the fore-reef succession and these are composed primarily of transgressive and highstand deposits. Carbonate production was severely restricted in the early Famennian coinciding with development of onlapping siliciclastic aprons during a relative sea-level lowstand. Evidence for a subaerial exposure event is also preserved within the siliciclastic strata. Controls on sequence development are difficult to constrain. Although two sequence boundaries can be correlated with falls on the global sea-level curve, the reef complexes evolved in an active extensional regime and it is highly likely that tectonism, in conjunction with eustasy, controlled accommodation on the platform and therefore carbonate productivity.  相似文献   
29.
Chemical sediments are common and diverse in the c. 3500 Myr old North Pole chert-barite unit in the Warrawoona Group, Western Australia. Although almost all original minerals were replaced during hydrothermal alteration, metamorphism and deformation, pseudomorphic relics of sedimentary and diagenetic textures and structures show that at least six lithofacies were partly or wholly chemical in origin. These contained five main chemical sedimentary components: primary carbonate mud, diagenetic carbonate crystals, primary sulphate crystals, diagenetic sulphate crystals and diagenetic sulphate nodules. All show a wide range of characteristics consistent only with a marine evaporative origin. Diagenetic carbonate and sulphate crystals, once ferroan dolomite and gypsum, were precipitated within volcanogenic lutites high on littoral mudflats. The other evaporative phases were apparently deposited behind a barrier bar composed of stranded pumice rafts. Primary sulphate crystals, once gypsum and now barite, were precipitated in semi-permanent pools immediately behind the bar. Primary carbonate mud, originally calcitic or aragonitic but now silicified, was deposited in nearby channels and on surrounding mudflats. Within these sediments, diagenetic carbonate crystals (formerly ferroan dolomite) and diagenetic sulphate nodules and crystals (once gypsum) grew during later desiccation. The existence of these evaporites, and more like them in the sediments of other Early Archaean cratons, suggests that shallow marine and terrestrial conditions prevailed over a small but significant portion of the early Earth, contrary to some models of global tectonic evolution. Their overall similarity with more recent evaporitic deposits indicates that there was greater conformity between conditions in modern and primeval sea-shore environments than might be expected, given the great age difference. The attitude implicit in many accounts of Earth's early history, that evaporites were either not deposited or not preserved in Archaean sediments, thus seems to be incorrect.  相似文献   
30.
The presence in rocks of coexisting sapphirine + quartz has been widely used to diagnose conditions of ultra‐high‐temperature (UHT) metamorphism (>900 °C), an inference based on the restriction of this assemblage to temperatures >980 °C in the conventionally considered FeO–MgO–Al2O3–SiO2 (FMAS) chemical system. With a new thermodynamic model for sapphirine that includes Fe2O3, phase equilibra modelling using thermocalc software has been undertaken in the FeO–MgO–Al2O3–SiO2–O (FMASO) and FeO–MgO–Al2O3–SiO2– TiO2–O (FMASTO) chemical systems. Using a variety of calculated phase diagrams for quartz‐saturated systems, the effects of Fe2O3 and TiO2 on FMAS phase relations are shown to be considerable. Importantly, the stability field of sapphirine + quartz assemblages extends down temperature to 850 °C in oxidized systems and thus out of the UHT range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号