首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
大气科学   9篇
地质学   36篇
海洋学   2篇
自然地理   5篇
  2012年   1篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   5篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
排序方式: 共有52条查询结果,搜索用时 437 毫秒
41.
42.
Evidence of past glacier fluctuations is valuable palaeoenvironmental data, but determining their relationship to climatic change is sometimes complex because of differing glacier sensitivities and patterns of response. In Iceland, a diverse range of glaciation creates changing geographical patterns of response to climatic changes. The outlet glaciers of the Márdalsjökull ice cap in southern Iceland have produced detailed, but differing, records of change. For a key southwestern sector of the ice cap, we specifically searched for evidence equivalent to the c . 4500 BP, c . 3100 BP and c . 1200 BP advances of Sólheimajökull reported earlier. A combination of geomorphological mapping and dating by tephrochronology and lichenometry was used to constrain the glacier advances and determine the relative magnitude of Neoglacial glacier episodes. This is a key step towards creating a record of the changes for the entire ice cap. Major glacier advances c . 4500–1000 BP previously identified on the southern margin of Márdalsjökull are shown not to have occurred in this sector, where Neoglacial maxima occur post-1755 AD.  相似文献   
43.
Based on a large number of new boreholes in northern Denmark, and on the existing data, a revised event‐stratigraphy is presented for southwestern Scandinavia. Five significant Late Saalian to Late Weichselian glacial events, each separated by periods of interglacial or interstadial marine or glaciolacustrine conditions, are identified in northern Denmark. The first glacial event is attributed to the Late Saalian c. 160–140 kyr BP, when the Warthe Ice Sheet advanced from easterly and southeasterly directions through the Baltic depression into Germany and Denmark. This Baltic ice extended as far as northern Denmark, where it probably merged with the Norwegian Channel Ice Stream (NCIS) and contributed to a large discharge of icebergs into the Norwegian Sea. Following the break up, marine conditions were established that persisted from the Late Saalian until the end of the Early Weichselian. The next glaciation occurred c. 65–60 kyr BP, when the Sundsøre ice advanced from the north into Denmark and the North Sea, where the Scandinavian and British Ice Sheets merged. During the subsequent deglaciation, large ice‐dammed lakes formed before the ice disintegrated in the Norwegian Channel, and marine conditions were re‐established. The following Ristinge advance from the Baltic, initiated c. 55 kyr BP, also reached northern Denmark, where it probably merged with the NCIS. The deglaciation, c. 50 kyr BP, was followed by a long period of marine arctic conditions. Around 30 kyr BP, the Scandinavian Ice Sheet expanded from the north into the Norwegian Channel, where it dammed the Kattegat ice lake. Shortly after, c. 29 kyr BP, the Kattegat advance began, and once again the Scandinavian and British Ice Sheets merged in the North Sea. The subsequent retreat to the Norwegian Channel led to the formation of Ribjerg ice lake, which persisted from 27 to 23 kyr BP. The expansion of the last ice sheet started c. 23 kyr BP, when the main advance occurred from north–northeasterly directions into Denmark. An ice‐dammed lake was formed during deglaciation, while the NCIS was still active. During a re‐advance and subsequent retreat c. 19 kyr BP, a number of tunnel‐valley systems were formed in association with ice‐marginal positions. The NCIS finally began to break up in the Norwegian Sea 18.8 kyr BP, and the Younger Yoldia Sea inundated northern Denmark around 18 kyr BP. The extensive amount of new and existing data applied to this synthesis has provided a better understanding of the timing and dynamics of the Scandinavian Ice Sheet (SIS) during the last c. 160 kyr. Furthermore, our model contributes to the understanding of the timing of the occasional release of large quantities of meltwater from the southwestern part of the SIS that are likely to enter the North Atlantic and possibly affect the thermohaline circulation.  相似文献   
44.
We describe a method which effectively and gently disaggregates muds and mudstones by combining a saturation-freeze-thaw technique with treatment by ultrasonic probe. The method works well for samples containing <5% TOC and which have been buried to depths less than about 3500 m. It does not work for samples strongly cemented with carbonates or silicates. Scanning electron micrographs of size fractions and the strong mineralogical segregation between size fractions are offered as evidence of complete disaggregation.  相似文献   
45.
The Late Palaeozoic configuration of Pangaea contributed to a palaeoclimatic extreme that was characterized by both icehouse and monsoonal conditions. This study uses sedimentological, geochemical, and provenance data from silty facies of the Earp and equivalent Supai Formations (Arizona, New Mexico) to shed light on atmospheric circulation and glacial–interglacial climate change in westernmost equatorial Pangaea. Five silt‐rich facies comprise both loessite and marine and fluvially reworked loessite. An initial aeolian origin for the silt is indicated by the remarkably invariant grain size and the laterally continuous, sheet‐like geometry of beds. The silt‐rich facies occur in repetitive facies associations (1–20 m scale) that form mixed continental‐marine (loess, marine‐reworked loess), shallow‐marine, and continental (loess, palaeosol) ‘sequences’. Facies repetitions of both mixed continental‐marine and shallow‐marine sequences reflect a linked glacioeustatic–glacioclimatic control, whereas the continental (loess–palaeosol) couplets reflect a primary glacial–interglacial climatic cyclicity linked to glacioeustasy. Stratigraphic interpretations suggest that aeolian silt flux maximized during glacial to incipient interglacial stages (lowstand to early transgression), and decreased significantly or ceased during interglacials (highstand to early falling stage). Detrital‐zircon geochronological data indicate a transition from dominantly north‐easterly winds during the Middle Pennsylvanian to north‐westerly and south‐easterly winds by the Early Permian, which trend is inferred to reflect the onset of monsoonal circulation in western Pangaea. Relative grain‐size data support the detrital‐zircon data, and exhibit a significant decrease from the Sedona arch/Central Arizona shelf (north) to the Pedregosa basin (south) sections. Whole‐rock geochemical data suggest a relatively unweathered source for the silt in the north, and detrital‐zircon data indicate significant silt was derived from the local basement. These large piles of silt(stone) preserve valuable information for reconstructing both long‐term evolution in atmospheric circulation and short‐term fluctuations in glacial–interglacial climate. Many such indicators for long have been applied to ‘recent’ (Plio‐Pleistocene) loess, but are equally applicable to ‘deep‐time’ strata.  相似文献   
46.
47.
48.
49.
Two recent databases show that the fossil record of insects is better than commonly supposed, comprising over 1000 families and 5000 genera. Insects (hexapods) first appeared in the Devonian, but by the Permian the number of orders present was similar to that of the present day. However, family data suggest an unsteady increase in diversity during the Phanerozoic, with four main peaks and troughs but no sudden change (supported by genera) at the Cretaceous/Tertiary transition.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号