首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   3篇
测绘学   1篇
大气科学   8篇
地球物理   10篇
地质学   49篇
海洋学   24篇
天文学   9篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   6篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   2篇
  2011年   5篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   5篇
  2003年   6篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1983年   2篇
  1980年   1篇
  1978年   1篇
  1972年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
71.
Abstract

A new earth system climate model of intermediate complexity has been developed and its climatology compared to observations. The UVic Earth System Climate Model consists of a three‐dimensional ocean general circulation model coupled to a thermodynamic/dynamic sea‐ice model, an energy‐moisture balance atmospheric model with dynamical feedbacks, and a thermomechanical land‐ice model. In order to keep the model computationally efficient a reduced complexity atmosphere model is used. Atmospheric heat and freshwater transports are parametrized through Fickian diffusion, and precipitation is assumed to occur when the relative humidity is greater than 85%. Moisture transport can also be accomplished through advection if desired. Precipitation over land is assumed to return instantaneously to the ocean via one of 33 observed river drainage basins. Ice and snow albedo feedbacks are included in the coupled model by locally increasing the prescribed latitudinal profile of the planetary albedo. The atmospheric model includes a parametrization of water vapour/planetary longwave feedbacks, although the radiative forcing associated with changes in atmospheric CO2 is prescribed as a modification of the planetary longwave radiative flux. A specified lapse rate is used to reduce the surface temperature over land where there is topography. The model uses prescribed present‐day winds in its climatology, although a dynamical wind feedback is included which exploits a latitudinally‐varying empirical relationship between atmospheric surface temperature and density. The ocean component of the coupled model is based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model 2.2, with a global resolution of 3.6° (zonal) by 1.8° (meridional) and 19 vertical levels, and includes an option for brine‐rejection parametrization. The sea‐ice component incorporates an elastic‐viscous‐plastic rheology to represent sea‐ice dynamics and various options for the representation of sea‐ice thermodynamics and thickness distribution. The systematic comparison of the coupled model with observations reveals good agreement, especially when moisture transport is accomplished through advection.

Global warming simulations conducted using the model to explore the role of moisture advection reveal a climate sensitivity of 3.0°C for a doubling of CO2, in line with other more comprehensive coupled models. Moisture advection, together with the wind feedback, leads to a transient simulation in which the meridional overturning in the North Atlantic initially weakens, but is eventually re‐established to its initial strength once the radiative forcing is held fixed, as found in many coupled atmosphere General Circulation Models (GCMs). This is in contrast to experiments in which moisture transport is accomplished through diffusion whereby the overturning is reestablished to a strength that is greater than its initial condition.

When applied to the climate of the Last Glacial Maximum (LGM), the model obtains tropical cooling (30°N‐30°S), relative to the present, of about 2.1°C over the ocean and 3.6°C over the land. These are generally cooler than CLIMAP estimates, but not as cool as some other reconstructions. This moderate cooling is consistent with alkenone reconstructions and a low to medium climate sensitivity to perturbations in radiative forcing. An amplification of the cooling occurs in the North Atlantic due to the weakening of North Atlantic Deep Water formation. Concurrent with this weakening is a shallowing of, and a more northward penetration of, Antarctic Bottom Water.

Climate models are usually evaluated by spinning them up under perpetual present‐day forcing and comparing the model results with present‐day observations. Implicit in this approach is the assumption that the present‐day observations are in equilibrium with the present‐day radiative forcing. The comparison of a long transient integration (starting at 6 KBP), forced by changing radiative forcing (solar, CO2, orbital), with an equilibrium integration reveals substantial differences. Relative to the climatology from the present‐day equilibrium integration, the global mean surface air and sea surface temperatures (SSTs) are 0.74°C and 0.55°C colder, respectively. Deep ocean temperatures are substantially cooler and southern hemisphere sea‐ice cover is 22% greater, although the North Atlantic conveyor remains remarkably stable in all cases. The differences are due to the long timescale memory of the deep ocean to climatic conditions which prevailed throughout the late Holocene. It is also demonstrated that a global warming simulation that starts from an equilibrium present‐day climate (cold start) underestimates the global temperature increase at 2100 by 13% when compared to a transient simulation, under historical solar, CO2 and orbital forcing, that is also extended out to 2100. This is larger (13% compared to 9.8%) than the difference from an analogous transient experiment which does not include historical changes in solar forcing. These results suggest that those groups that do not account for solar forcing changes over the twentieth century may slightly underestimate (~3% in our model) the projected warming by the year 2100.  相似文献   
72.
The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes. Emplacement of a dike began 24 hours before the start of the eruption on 3 January 1983. Seismic and geodetic evidence indicates that the dike collided with a magma body in the rift zone. Most of the lava produced during the initial episode of the Puu Oo eruption is of hybrid composition, with petrographic and geochemical evidence of mixing magmas of highly evllved and more mafic compositions. Some olivine and plagioclase grains in the hybrid lavas show reverse zoning. Whole-rock compositional variations are linear even for normally compatible elements like Ni and Cr. Leastsquares mixing calculations yield good residuals for major and trace element analyses for magma mixing. Crystal fractionation calculations yield unsatisfactory residuals. The highly evolved magma is similar in composition to the lava from the 1977 eruption and, at one point, vents for these two eruptions are only 200 m apart. Possibly both the 1977 lava and the highly evolved component of the episode 1 Puu Oo lava were derived from a common body of rift-zone-stored magma. The more mafic mixing component may be represented by the most mafic lava from the January 1983 eruption; it shows no evidence of magma mixing. The dike that was intruded just prior to the start of the Puu Oo eruption may have acted as a hydraulic plunger causing mixing of the two rift-zone-stored magmas.  相似文献   
73.
We evaluate the capacity of a regional climate model to simulate the statistics of extreme events, and also examine the effect of differing horizontal resolution, at the scale of individual hydrological basins in the topographically complex province of British Columbia, Canada. Two climate simulations of western Canada (WCan) were conducted with the Canadian Regional Climate Model (version 4) at 15 (CRCM15) and 45?km (CRCM45) horizontal resolution driven at the lateral boundaries by global reanalysis over the period 1973–1995. The simulations were evaluated with ANUSPLIN, a daily observational gridded surface temperature and precipitation product and with meteorological data recorded at 28 stations within the upper Peace, Nechako, and upper Columbia River basins. In this work, we focus largely on a comparison of the skill of each model configuration in simulating the 90th percentile of daily precipitation (PR90). The companion paper describes the results for a wider range of temperature and precipitation extremes over the entire WCan domain.

Over all three watersheds, both simulations exhibit cold biases compared with observations, with the bias exacerbated at higher resolution. Although both simulations generally display wet biases in median precipitation, CRCM15 features a reduced bias in PR90 in all three basins in summer and throughout the year in the upper Columbia River basin. However, the higher resolution model is inferior to CRCM45 with respect to rarer heavy precipitation events and also displays high spatial variability and lower spatial correlations with ANUSPLIN compared with the coarser resolution model. A reduction in the range of PR90 biases over the upper Columbia basin is noted when the 15?km results are averaged to the 45?km grid. This improvement is partly attributable to the averaging of errors between different elevation data used in the gridded observations and CRCM, but the sensitivity of CRCM15 to resolved topography is also clear from spatial maps of seasonal extremes. At the station scale, modest but systematic reductions in the bias of PR90 relative to ANUSPLIN are again found when the CRCM15 results are averaged to the 45?km grid. Furthermore, the annual cycle of inter-station spatial variance in the upper Columbia River basin is well reproduced by CRCM15 but not by ANUSPLIN or CRCM45. The former result highlights the beneficial effect of spatial averaging of small-scale climate variability, whereas the latter is evidently a demonstration of the added value at high resolution vis-à-vis the improved simulation of precipitation at the resolution limit of the model.  相似文献   
74.
The Newark Island layered intrusion is a composite layered intrusion within the Nain anorthosite complex, Labrador. The intrusion comprises a lower layered series (LS) dominated by troctolites, olivine gabbros and oxide-rich cumulates and an upper hybrid series (HS) characterized by a wide range of mafic, granitic and hybrid cumulates and discontinuous layers of chilled mafic rocks (Wiebe 1988). The HS crystallized from a series of replenishments of both silicic and basic magmas. The LS crystallized from periodically replenished basic magmas. The LS has a lower zone that consists mainly of olivine-plagioclase cumulates and contains minor cryptic reversals in mineral compositions that resulted from replenishments of relatively primitive magma. An upper zone is dominated by olivine-plagioclaseaugite-ilmenite cumulates. Cumulus titanomagnetite and pyrrhotite occur within some oxide-rich cumulates, and the stratigraphically highest layers contain cumulus apatite. At intermediate levels in the sequence, cumulus inverted pigeonite occurs in place of olivine. Several prominent regressions in the stratigraphy of the upper zone are marked by fine-grained troctolitic layers with much higher Mg no. [100 MgO/(MgO+FeO)] and anorthite than underlying cumulates. These layers coarsen upward and grade back to oxide-bearing olivine gabbros within thicknesses ranging from 10 cm to 15 m. Dikes that cut the LS have major- and trace-element compositions that strongly suggest that they are feeders for the replenishments. In the lower zone when olivine and plagioclase were the only cumulus phases, replenishments were less dense than the resident magma and rose as plumes and mixed with it. Precipitation of cumulus oxides in the upper zone lowered the density of resident magma so that subsequent replenishments were more dense than resident magma. Replenishments that occurred after oxides began to precipitate had small injection velocities. These post-oxide injections flowed along the interface between resident magma and the cumulate pile and precipitated flow-banded, fine-grained troctolites.  相似文献   
75.
76.
High-frequency (120 and 420 kHz) sound was used to survey sound scatterers in the water over Georges Bank. In addition to the biological sound scatterers (the plankton and micronekton), scattering associated with internal waves and suspended sediment was observed. Volume backscattering was more homogeneous in the vertical dimension (with occasional patches) in the shallow central portion of the Bank where there is significant mixing. In the deeper outer portion of the Bank where the water is stratified, volume backscattering was layered and internal waves modulated the vertical position of the layers in the pycnocline. The internal waves typically had amplitudes of 5-20 m, but sometimes much higher. Species composition and size data from samples of the animals and suspended sediment used in conjunction with acoustic scattering models revealed that throughout the region the animals generally dominate the scattering, but there are times and places where sand particles (suspended as high as up to the sea surface) can dominate. The source of the scattering in the internal waves is probably due to a combination of both animals and sound-speed microstructure. Determination of their relative contributions requires further study  相似文献   
77.
The Gouldsboro Granite forms part of the Coastal Maine Magmatic Province, a region characterized by granitic plutons that are intimately linked temporally and petrogenetically with abundant co-existing mafic magmas. The pluton is complex and preserves a felsic magma chamber underlain by contemporaneous mafic magmas; the transition between the two now preserved as a zone of chilled mafic sheets and pillows in granite. Mafic components have highly variably isotopic compositions as a result of contamination either at depth or following injection into the magma chamber. Intermediate dikes with identical isotopic compositions to more mafic dikes suggest that closed system fractionation may be occurring in deeper level chambers prior to injection to shallower levels. The granitic portion of the pluton has the highest Nd isotopic composition (εNd = + 3.0) of plutons in the region whereas the mafic lithologies have Nd isotopic compositions (εNd = + 3.5) that are the lowest in the region and similar to the granite and suggestive of prolonged interactions and homogenization of the two components. Sr and Nd isotopic data for felsic enclaves are inconsistent with previously suggested models of diffusional exchange between the contemporaneous mafic magmas and the host granite to explain highly variable alkali contents. The felsic enclaves have relatively low Nd isotopic compositions (εNd = + 2 – + 1) indicative of the involvement of a third, lower εNd melt during granite petrogenesis, perhaps represented by pristine granitic dikes contemporaneous with the nearby Pleasant Bay Layered Intrusion. The dikes at Pleasant Bay and the felsic enclaves at Gouldsboro likely represent remnants of the silicic magmas that originally fed and replenished the overlying granitic magma chambers. The large isotopic (and chemical) contrasts between the enclaves and granitic dikes and granitic magmas may be in part a consequence of extended interactions between the granitic magmas and co-existing mafic magmas by mixing, mingling and diffusion. Alternatively, the granitic magmas may represent an additional crustal source. Using granitic rocks such as these with abundant evidence for interactions with mafic magmas complicate their use in constraining crustal sources and tectonic settings. Fine-grained dike rocks may provide more meaningful information, but must be used with caution as these may also have experienced compositional changes during mafic–felsic interactions.  相似文献   
78.
Methane release from soils of a Georgia salt marsh   总被引:1,自引:0,他引:1  
A seasonal study of methane release from marsh soils to the atmosphere indicates that ebullition is a significant process varying both seasonally and spatially. Release rates are higher during summer months than winter months and ebullition is greatest in the short Spartina alterniflora marshes and least in the tall S. alterniflora marshes. The annual amounts of methane released in the short and tall marshes are 53.1 and 0.4 gm?3 which represents a loss of 8.8 and 0.002% of the net carbon fixation in the two respective marsh types.In vitro experimentation shows that methane production is sensitive to changes in temperature and addition of H2 and CO2.  相似文献   
79.
Production and consumption activities in industrialized countries are increasingly dependent on material and energy resources from other world regions and imply significant economic and environmental consequences in other regions around the world. The substitution of domestic material extraction and processing through imports is also shifting environmental burden abroad and thus extends the responsibility for environmental impacts as well as social consequences from the national to the global level. Based on the results of the Global Resource Accounting Model, this paper presents the first trade balances and consumption indicators for embodied materials in a time series from 1995 to 2005. The model includes 53 countries and two world regions. It is based on the 2009 edition of the input–output tables and bilateral trade data published by the Organisation for Economic Co-operation and Development (OECD) and is extended by physical data on global material extraction. The results quantify the global shift of embodied material resources from developing and emerging countries to the industrialized world. In addition to the level of industrialization and wealth, population density is identified as an important factor for the formation of physical trade patterns. Exports of embodied materials of less densely populated countries tend to surpass their imports, and vice versa. We also provide a quantitative comparison between conventionally applied indicators on material consumption based on direct material flows and indicators including embodied material flows. We show that the difference between those two indicators can be as much as 200%, calling for an adjustment of conventional national material flow indicators. Multi-regional input–output models prove to be a useful methodological approach to derive globally consistent and comprehensive data on material embodiments of trade and consumption.  相似文献   
80.
From the Hensen net toward four-dimensional biological oceanography   总被引:1,自引:0,他引:1  
The development of quantitative zooplankton collecting systems began with [Hensen, 1887] and [Hensen, 1895]). Non-opening closing nets, opening closing nets (mostly messenger based), high-speed samplers, and planktobenthos net systems all had their start in his era — the late 1800s and early 1900s. This was also an era in which many of the fundamental questions about the structure and dynamics of the plankton in the worlds oceans were first posed. Fewer new systems were introduced between 1912 and 1950 apparently due in part to the two World Wars. The continuous plankton recorder stands out as a truly innovative device developed during this period (Hardy 1926b Nature, London118, 630). Resurgence in development of mechanically-based instruments occurred during the 1950s and 1960s. A new lineage of high-speed samplers, the Gulf series, began in the 1950s and a number of variants were developed in the 1960s and 1970s. Net systems specifically designed to collect neuston first appeared in the late 1950s. During the 1960s, many focused field and experimental tank experiments were carried out to investigate the hydrodynamics of nets, and much of our knowledge concerning net design and construction criteria was developed. The advent of reliable electrical conducting cables and electrically-based control systems during this same period gave rise first to a variety of cod-end samplers and then to the precursors of the acoustically and electronically-controlled multi-net systems and environmental sensors, which appeared in the 1970s. The decade of the 1970s saw a succession of multi-net systems based both on the Bé multiple plankton sampler and on the Tucker trawl. The advent of the micro-computer stimulated and enabled the development of sophisticated control and data logging electronics for these systems in the 1980s. In the 1990s, acoustic and optical technologies gave rise to sensor systems that either complement multiple net systems or are deployed without nets. Multi-sensor systems with high data telemetry rates through electro-optical cable are now being deployed in towed bodies and on remotely operated vehicles. In the offing are new molecular technologies to identify species in situ, and realtime data analysis, image processing, and 3D/4D display. In the near future, it is likely that the use of multi-sensor systems deployed on autonomous vehicles will yield world wide coverage of the distribution and abundance of zooplankton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号