首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62335篇
  免费   675篇
  国内免费   583篇
测绘学   1655篇
大气科学   4936篇
地球物理   12048篇
地质学   20685篇
海洋学   5431篇
天文学   14618篇
综合类   182篇
自然地理   4038篇
  2021年   378篇
  2020年   488篇
  2019年   503篇
  2018年   1047篇
  2017年   942篇
  2016年   1396篇
  2015年   938篇
  2014年   1458篇
  2013年   3152篇
  2012年   1521篇
  2011年   2145篇
  2010年   1876篇
  2009年   2660篇
  2008年   2334篇
  2007年   2311篇
  2006年   2124篇
  2005年   1933篇
  2004年   1901篇
  2003年   1792篇
  2002年   1747篇
  2001年   1561篇
  2000年   1525篇
  1999年   1443篇
  1998年   1364篇
  1997年   1327篇
  1996年   1150篇
  1995年   1067篇
  1994年   950篇
  1993年   896篇
  1992年   842篇
  1991年   842篇
  1990年   898篇
  1989年   771篇
  1988年   756篇
  1987年   868篇
  1986年   774篇
  1985年   987篇
  1984年   1117篇
  1983年   1032篇
  1982年   999篇
  1981年   948篇
  1980年   858篇
  1979年   821篇
  1978年   796篇
  1977年   733篇
  1976年   671篇
  1975年   606篇
  1974年   656篇
  1973年   673篇
  1972年   409篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
201.
The Central Godavari delta is located along the Bay of Bengal Coast, Andhra Pradesh, India, and is drained by Pikaleru, Kunavaram and Vasalatippa drains. There is no groundwater pumping for agriculture as wells as for domestic purpose due to the brackish nature of the groundwater at shallow depths. The groundwater table depths vary from 0.8 to 3.4 m and in the Ravva Onshore wells, 4.5 to 13.3 m. Electrical Resistivity Tomography (ERT) surveys were carried out at several locations in the delta to delineate the aquifer geometry and to identify saline water aquifer zones. Groundwater samples collected and analyzed for major ions for assessing the saline water intrusion and to identify the salinity origin in the delta region. The results derived from ERT indicated low resistivity values in the area, which can be attributed to the existence of thick marine clays from ground surface to 12–15 m below ground level near the coast and high resistivity values are due to the presence of coarse sand with freshwater away from the coast. The resistivity values similar to saline water <0.01 Ω m is attributed to the mixing of the saline water along surface water drains. In the Ravva Onshore Terminal low resistivity values indicated up coning of saline water and mixing of saline water from Pikaleru drain. The SO 4 ?2 /Cl?and Na+2/Cl?ratios did not indicate saline water intrusion and the salinity is due to marine palaeosalinity, dilution of marine clays and dissolution of evaporites.  相似文献   
202.
Site response studies in Agartala Urban agglomeration   总被引:1,自引:0,他引:1  
A systematic investigation using digital microearthquake recorders with short period SS-1 seismometers, covering 76 sites in and around Agartala city, has been carried out for site response (SR) studies in the area. In the northern part of the area, SR varies from 1.15 to 1.85 corresponding to peak frequency 0.76 to 0.93 Hz where soil is mostly semi-consolidated and stiffer than recent Quaternary deposits (Haora River formation). In the southern part of the area, SR varies from 1.12 to 2.42 corresponding to peak frequency from 0.71 to 0.85 Hz within the Dupitila formation (early Quaternary). It is observed that estimated SR from H/V increases from edges to middle of the Haora River valley and impedance contrast fallows the similar trend. This reflects that site response by H/V is influenced by impedance contrast, whereas computed amplification from 1-D model shows opposite trend. The maximum amplification at fundamental frequency of resonance, 1.04 Hz estimated from H/V by near to BH-7, is 2.5 times greater than the impedance contrast/ratio derived from 1-D model for same location. Relationship between resonance frequency and depth was obtained by applying quarter wavelength and Bard (2000) methodologies, which shows linearity, whereas H/V shows its nonlinearity characteristic in soil across the valley part of Haora River. Shear wave velocities, and subsequently, SPT index and factor of safety (by cyclic stress approach) were estimated from geotechnical parameters. Vs30 and site response data were used in this study for getting a first hand information about soil stiffness condition in the area. The estimation of SPT index and factor of safety could be a useful tool for delineating liquefied and none liquefied zones at various depth levels, especially where water table exists at a very shallow level. The expected liquefiable zone was observed at depths varying from 6–25 m beneath the soil bearing zones where percentage of fines is estimated to be more than 35% for the area. This knowledge about subsurface soil characteristics will be useful for the civil engineers/city planners, which can be taken into account at the time of constructing earthquake-resistant structures in the area.  相似文献   
203.
204.
Sea ice in the western Antarctic Peninsula (WAP) region is both highly variable and rapidly changing. In the Palmer Station region, the ice season duration has decreased by 92 d since 1978. The sea-ice...  相似文献   
205.
Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic fluctuation in lava effusion rate is a relatively common process at basaltic volcanoes, and that the presence of shatter rings in prehistoric lava flow fields can be used as evidence that such fluctuations have occurred.  相似文献   
206.
207.
We present an evaluation of observations from the Lidar Ozone and Aerosol for NDACC in Antarctica (LOANA) at the Dumont d’Urville station, Antarctica. This instrument is part of the Network for the Detection of Atmospheric Composition Change (NDACC), and ensures continuity with lidar measurements made since 1989 with the previous instrument at this site. This study is based on the dataset from 2008 to 2009, and comparisons are made with observations from balloon soundings, and from three satellite experiments: Aura/MLS, TIMED/SABER, and CALIOP/CALIPSO. The lidar ozone data are in very good agreement with the balloon sounding data (ECC sensor), revealing a bias of less than 3% between 17 and 34 km. For temperature, the lidar shows a low bias of ?3 K at 20 km when compared with Aura/MLS. Between 30 and 50 km, the bias is less than 2 K. We also present our initial results showing diurnal variations in temperature. The amplitude of these diurnal cycles is on the order of 1 K and is unlikely to account for the temperature biases between LOANA and the reference instruments. Comparisons of total attenuated backscatter reveal good qualitative agreement between LOANA and CALIOP, with differences of less than 30% in the derived optical depth.  相似文献   
208.
We present a detailed analysis of solar acoustic mode frequencies and their rotational splittings for modes with degree up to 900. They were obtained by applying spherical harmonic decomposition to full-disk solar images observed by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory spacecraft. Global helioseismology analysis of high-degree modes is complicated by the fact that the individual modes cannot be isolated, which has limited so far the use of high-degree data for structure inversion of the near-surface layers (r>0.97R ). In this work, we took great care to recover the actual mode characteristics using a physically motivated model which included a complete leakage matrix. We included in our analysis the following instrumental characteristics: the correct instantaneous image scale, the radial and non-radial image distortions, the effective position angle of the solar rotation axis, and a correction to the Carrington elements. We also present variations of the mode frequencies caused by the solar activity cycle. We have analyzed seven observational periods from 1999 to 2005 and correlated their frequency shift with four different solar indices. The frequency shift scaled by the relative mode inertia is a function of frequency alone and follows a simple power law, where the exponent obtained for the p modes is twice the value obtained for the f modes. The different solar indices present the same result.  相似文献   
209.
From the editors     
<正>Dear JEEEV Contributors, Readers and Friends,This issue of Earthquake Engineering and Engineering Vibration (Vol. 9, No. 3) includes five papers that were presented at the 4th  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号