首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71486篇
  免费   652篇
  国内免费   381篇
测绘学   1899篇
大气科学   5402篇
地球物理   12837篇
地质学   27103篇
海洋学   5650篇
天文学   15580篇
综合类   244篇
自然地理   3804篇
  2020年   343篇
  2019年   339篇
  2018年   3701篇
  2017年   3533篇
  2016年   2585篇
  2015年   804篇
  2014年   1195篇
  2013年   2444篇
  2012年   2178篇
  2011年   4174篇
  2010年   3939篇
  2009年   4441篇
  2008年   3704篇
  2007年   4343篇
  2006年   1720篇
  2005年   2020篇
  2004年   1854篇
  2003年   1845篇
  2002年   1592篇
  2001年   1257篇
  2000年   1191篇
  1999年   1122篇
  1998年   1056篇
  1997年   1064篇
  1996年   844篇
  1995年   836篇
  1994年   794篇
  1993年   738篇
  1992年   709篇
  1991年   680篇
  1990年   776篇
  1989年   674篇
  1988年   648篇
  1987年   741篇
  1986年   620篇
  1985年   824篇
  1984年   947篇
  1983年   912篇
  1982年   864篇
  1981年   828篇
  1980年   739篇
  1979年   700篇
  1978年   692篇
  1977年   627篇
  1976年   601篇
  1975年   517篇
  1974年   597篇
  1973年   586篇
  1972年   363篇
  1971年   335篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Employing integrated remote sensing and GIS technology the western most part of Tripura region (Northeast India) and adjoining Bangladesh region has been investigated in the light of its geomorphological characteristics. Nature of fold ridges, several streams and the respective drainage basins are well depicted in satellite images and digital elevation model providing meaningful information. Quantitative parameters such as stream sinuosity, drainage basin asymmetry, basin elongation ratio have been computed. Main rivers of the study area, namely the Gomti and Khowai follows extremely meandering path and crosses through the transversely faulted anticlinal ridges. Fluvial anomalies viz. shift in stream channel and the abandoned meandering loops have been inferred and mapped. The Haora river in the study area exhibits northward shift in some part. Development of drainage system towards north and south from the drainage divide along the latitude 23°45N indicated up arching of the region which is also corroborated by the extracted topographic profiles. It has been observed that several tributary streams have gone dry and agricultural fields are developed along the dried up stream. These derived parameters remained useful to understand the nature of topographical modification attributed to the possible tectonic activity.  相似文献   
992.
Hyperspectral remote sensing, because of its large number of narrow bands, has shown possibility of discriminating the crops. Current study was carried out to select the optimum bands for discrimination among pulses, cole crops and ornamental plants using the ground-based Hyperspectral data in Patha village, Lalitpur district, Uttar Pradesh state and Kolkata, West Bengal state. The field observations of reflectance were taken using a 512-channel spectroradiometer with a range of 325–1075 nm. The stepwise discriminant analysis was carried out and separability measures, such as Wilks’ lambda and F-Value were used as criteria for identifying the narrow bands. The analysis showed that, the best four bands for pulse crop discrimination lie mostly in NIR and early MIR regions i.e. 750, 800, 940 and 960 nm. Within cole crops discrimination is primarily determined by the green, red and NIR bands of 550, 690, 740, 770 and 980 nm. The separability study showed the bands 420,470,480,570,730,740, 940, 950, 970, 1030 nm are useful for discriminating flowers.  相似文献   
993.
This paper highlights the spatial and temporal variability of atmospheric columnar methane (CH4) concentration over India and its correlation with the terrestrial vegetation dynamics. SCanning IMaging Absorption spectrometer for Atmospheric CHartographY (SCIAMACHY) on board ENVIronmental SATellite (ENVISAT) data product (0.5° × 0.5°) was used to analyze the atmospheric CH4 concentration. Satellite Pour l'Observation de la Terre (SPOT)-VEGETATION sensor’s Normalized Difference Vegetation Index (NDVI) product, aggregated at 0.5° × 0.5° grid level for the same period (2004 and 2005), was used to correlate the with CH4 concentration. Analysis showed mean monthly CH4 concentration during the Kharif season varied from 1,704 parts per billion volume (ppbv) to 1,780 ppbv with the lowest value in May and the highest value in September. Correspondingly, mean NDVI varied from 0.28 (May) to 0.53 (September). Analysis of correlation between CH4 concentration and NDVI values over India showed positive correlation (r = 0.76; n = 6) in Kharif season. Further analysis using land cover information showed characteristic low correlation in natural vegetation region and high correlation in agricultural area. Grids, particularly falling in the Indo-Gangetic Plains showed positive correlation. This could be attributed to the rice crop which is grown as a predominant crop during this period. The CH4 concentration pattern matched well with growth pattern of rice with the highest concentration coinciding with the peak growth period of crop in the September. Characteristically low correlation was observed (r = 0.1; n = 6) in deserts of Rajasthan and forested Himalayan ecosystem. Thus, the paper emphasizes the synergistic use of different satellite based data in understanding the variability of atmospheric CH4 concentration in relation to vegetation.  相似文献   
994.
Hyperspectral data are generally noisier compared to broadband multispectral data because their narrow bandwidth can only capture very little energy that may be overcome by the self-generated noise inside the sensors. It is desirable to smoothen the reflectance spectra. This study was carried out to see the effect of smoothing algorithms - Fast-Fourier Transform (FFT) and Savitzky–Golay (SG) methods on the statistical properties of the vegetation spectra at varying filter sizes. The data used in the study is the reflectance spectra data obtained from Hyperion sensor over an agriculturally dominated area in Modipuram (Uttar Pradesh). The reflectance spectra were extracted for wheat crop at different growth stages. Filter sizes were varied between 3 and 15 with the increment of 2. Paired t-test was carried out between the original and the smoothed data for all the filter sizes in order to see the extent of distortion with changing filter sizes. The study showed that in FFT, beyond filter size 11, the number of locations within the spectra where the smooth spectra were statistically different from its original counterpart increased to 14 and reaches 21 at the filter size 15. However, in SG method, number of statistically different locations were more than those found in the FFT, but the number of locations did not changing drastically. The number of statistically disturbed locations in SG method varied between 16 and 19. The optimum filter size for smoothing the vegetation spectra was found to be 11 in FFT and 9 in SG method.  相似文献   
995.
Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays (ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12?C26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6?mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3?mm (unweighted), 4.4?mm (diagonal), 8.6?mm [variance component (VC) estimation], and 8.6?mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.  相似文献   
996.
Climate change is associated with earth radiation budget that depends upon incoming solar radiation, surface albedo and radiative forcing by greenhouse gases. Human activities are contributing to climate change by causing changes in Earth’s atmosphere (greenhouse gases, aerosols) and biosphere (deforestation, urbanization, irrigation). Long term and precise measurements from calibrated global observation constellation is a vital component in climate system modelling. Space based records of biosphere, cryosphere, hydrosphere and atmosphere over more than three decades are providing important information on climate change. Space observations are an important source of climate variables due to multi scale simultaneous observation (local, regional, and global scales) capability with temporal revisit in tune with requirements of land, ocean and atmospheric processes. Essential climatic variables that can be measured from space include atmosphere (upper air temperature, water vapour, precipitation, clouds, aerosols, GHGs etc.), ocean (sea ice, sea level, SST, salinity, ocean colour etc.) and land (snow, glacier, albedo, biomass, LAI/fAPAR, soil moisture etc.). India’s Earth Observation Programme addresses various aspects of land, ocean and atmospheric applications. The present and planned missions such as Resourcesat-1, Oceansat-2, RISAT, Megha-Tropiques, INSAT-3D, SARAL, Resourcesat-2, Geo-HR Imager and series of Environmental satellites (I-STAG) would help in understanding the issues related to climate changes. The paper reviews observational needs, space observation systems and studies that have been carried out at ISRO (Indian Space Research Organization) towards mapping/detecting the indicators of climate change, monitoring the agents of climate change and understanding the impact of climate change, in national perspectives. Studies to assess glacier retreat, changes in polar ice cover, timberline change and coral bleaching are being carried out towards monitoring of climate change indicators. Spatial methane inventories from paddy rice, livestock and wetlands have been prepared and seasonal pattern of CO2, and CO have been analysed. Future challenges in space observations include design and placement of adequate and accurate multi-platform observational systems to monitor all parameters related to various interaction processes and generation of long term calibrated climate data records pertaining to land ocean and atmosphere.  相似文献   
997.
Tomographic 4D reconstructions of ionospheric anomalies appearing in the high-latitude polar cap region are compared with plasma density measurements by digital ionosonde located near the north magnetic pole at Eureka station and with in situ plasma measurements on-board DMSP spacecraft. The moderate magnetic storm of 14–17 October 2002 is taken as an example of a geomagnetic disturbance which generates large-scale ionospheric plasma anomalies at mid-latitudes and in the polar cap region. Comparison of the GPS tomographic reconstructions over Eureka station with the ionosonde measurements of the F layer peak densities indicates that the GPS tomography correctly predicts the time of arrival and passage of the ionospheric tongue of ionization over the magnetic pole area, although the tomographic technique appears to under-estimate the value of F peak plasma density. Comparison with the in situ plasma measurements by the DMSP SSIES instruments shows that the GPS tomography correctly reproduces the large-scale spatial structure of ionospheric anomalies over a wide range of latitudes from mid-latitudes to the high-latitude polar cap region, though the tomographic reconstructions tend to over-estimate the density of the topside ionosphere at 840 km DMSP orbit. This study is essential for understanding the quality and limitations of the tomographic reconstruction techniques, particularly in high-latitude regions where GPS TEC measurements and other ionospheric data sources are limited.  相似文献   
998.
Rail transit continues to be a popular alternative for cities as a tool for alleviating automobile congestion and for redeveloping areas into transit and pedestrian-friendly environments. Ideally, rail transit will draw trips away from cars, but the quantitative work that tests this notion has often been either case studies of neighborhoods, in which conclusions are tough to generalize, or citywide comparisons where important spatial variation is lost in aggregation. This study seeks to narrow this gap in the research by using multivariate analysis of covariance to isolate the effect of covariates and cities on changes in work trip mode choice at the traffic analysis zone (TAZ) level for nine cities between 1990 and 2000. The results suggest differences by city in the change at the TAZ level of the proportion of people driving alone and taking transit. Increases in transit usage were associated with cities that built rail transit, while increases in automobile commuting and decreases in transit usage were associated with cities that did not.  相似文献   
999.
Recently, four global geopotential models (GGMs) were computed and released based on the first 2 months of data collected by the Gravity field and steady-state Ocean Circulation Explorer (GOCE) dedicated satellite gravity field mission. Given that GOCE is a technologically complex mission and different processing strategies were applied to real space-collected GOCE data for the first time, evaluation of the new models is an important aspect. As a first assessment strategy, we use terrestrial gravity data over Switzerland and Australia and astrogeodetic vertical deflections over Europe and Australia as ground-truth data sets for GOCE model evaluation. We apply a spectral enhancement method (SEM) to the truncated GOCE GGMs to make their spectral content more comparable with the terrestrial data. The SEM utilises the high-degree bands of EGM2008 and residual terrain model data as a data source to widely bridge the spectral gap between the satellite and terrestrial data. Analysis of root mean square (RMS) errors is carried out as a function of (i) the GOCE GGM expansion degree and (ii) the four different GOCE GGMs. The RMS curves are also compared against those from EGM2008 and GRACE-based GGMs. As a second assessment strategy, we compare global grids of GOCE GGM and EGM2008 quasigeoid heights. In connection with EGM2008 error estimates, this allows location of regions where GOCE is likely to deliver improved knowledge on the Earth’s gravity field. Our ground truth data sets, together with the EGM2008 quasigeoid comparisons, signal clear improvements in the spectral band ~160–165 to ~180–185 in terms of spherical harmonic degrees for the GOCE-based GGMs, fairly independently of the individual GOCE model used. The results from both assessments together provide strong evidence that the first 2 months of GOCE observations improve the knowledge of the Earth’s static gravity field at spatial scales between ~125 and ~110 km, particularly over parts of Asia, Africa, South America and Antarctica, in comparison with the pre-GOCE-era.  相似文献   
1000.
The space–time prism demarcates all locations in space–time that a mobile object or person can occupy during an episode of potential or unobserved movement. The prism is central to time geography as a measure of potential mobility and to mobile object databases as a measure of location possibilities given sampling error. This paper develops an analytical approach to assessing error propagation in space–time prisms and prism–prism intersections. We analyze the geometry of the prisms to derive a core set of geometric problems involving the intersection of circles and ellipses. Analytical error propagation techniques such as the Taylor linearization method based on the first-order partial derivatives are not available since explicit functions describing the intersections and their derivatives are unwieldy. However, since we have implicit functions describing prism geometry, we modify this approach using an implicit function theorem that provides the required first-order partials without the explicit expressions. We describe the general method as well as details for the two spatial dimensions case and provide example calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号