首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65187篇
  免费   2707篇
  国内免费   3233篇
测绘学   2218篇
大气科学   6237篇
地球物理   12513篇
地质学   24111篇
海洋学   6356篇
天文学   13849篇
综合类   1102篇
自然地理   4741篇
  2022年   817篇
  2021年   1158篇
  2020年   1124篇
  2019年   1164篇
  2018年   1864篇
  2017年   1772篇
  2016年   2010篇
  2015年   1434篇
  2014年   2092篇
  2013年   3453篇
  2012年   2076篇
  2011年   2599篇
  2010年   2389篇
  2009年   2830篇
  2008年   2628篇
  2007年   2659篇
  2006年   2475篇
  2005年   1966篇
  2004年   1869篇
  2003年   1822篇
  2002年   1831篇
  2001年   1670篇
  2000年   1486篇
  1999年   1478篇
  1998年   1334篇
  1997年   1359篇
  1996年   1095篇
  1995年   1088篇
  1994年   1018篇
  1993年   912篇
  1992年   862篇
  1991年   783篇
  1990年   862篇
  1989年   782篇
  1988年   723篇
  1987年   798篇
  1986年   674篇
  1985年   865篇
  1984年   985篇
  1983年   953篇
  1982年   898篇
  1981年   839篇
  1980年   743篇
  1979年   724篇
  1978年   708篇
  1977年   643篇
  1976年   612篇
  1975年   538篇
  1974年   609篇
  1973年   602篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
481.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   
482.
Remote Sensing and Geographic Information System has become one of the leading tools in the field of hydrogeological science, which helps in assessing, monitoring and conserving groundwater resources. It allows manipulation and analysis of individual layer of spatial data. It is used for analysing and modelling the interrelationship between the layers. This paper mainly deals with the integrated approach of Remote Sensing and geographical information system (GIS) to delineate groundwater potential zones in hard rock terrain. The remotely sensed data at the scale of 1:50,000 and topographical information from available maps, have been used for the preparation of ground water prospective map by integrating geology, geomorphology, slope, drainage-density and lineaments map of the study area. Further, the data on yield of aquifer, as observed from existing bore wells in the area, has been used to validate the groundwater potential map. The final result depicts the favourable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.  相似文献   
483.
Due to their balneotherapeutic features, the organic-rich sediments in Makirina Cove are an important source of healing mud. An environmental geochemistry approach using normalization techniques was applied to evaluate the anthropogenic contribution of trace metals to sediments used as healing mud. Sediment geochemistry was found to be associated with land-use change and storm events, as well as with proximity of a road with heavy traffic in the summer months. Local valley topography preferentially channels lithogenic and pollutant transport to the cove. Concentrations and distribution of trace metals indicate lithogenic (Ni, Cr, Co) and anthropogenic (Pb, Cu, Zn and Se) contributions to the sediments. The calculation of enrichment factors indicates a moderate (EFs between 2–3.5) input of anthropogenic Cu and Pb in surficial sediments to a depth of 10 cm. Patients using the Makirina Cove sediments as healing mud could be to some extent exposed to enhanced uptake of metals from anthropogenic sources via dermal contact.  相似文献   
484.
The Cu–Co–Ni Texeo mine has been the most important source of Cu in NW Spain since Roman times and now, approximately 40,000 m3 of wastes from mine and metallurgical operations, containing average concentrations of 9,263 mg kg−1 Cu, 1,100 mg kg−1 As, 549 mg kg−1 Co, and 840 mg kg−1 Ni, remain on-site. Since the cessation of the activity, the abandoned works, facilities and waste piles have been posing a threat to the environment, derived from the release of toxic elements. In order to assess the potential environmental pollution caused by the mining operations, a sequential sampling strategy was undertaken in wastes, soil, surface and groundwater, and sediments. First, screening field tools were used to identify hotspots, before defining formal sampling strategies; so, in the areas where anomalies were detected in a first sampling stage, a second detailed sampling campaign was undertaken. Metal concentrations in the soils are highly above the local background, reaching up to 9,921 mg kg−1 Cu, 1,373 mg kg−1 As, 685 mg kg−1 Co, and 1,040 mg kg−1 Ni, among others. Copper concentrations downstream of the mine works reach values up to 1,869 μg l−1 and 240 mg kg−1 in surface water and stream sediments, respectively. Computer-based risk assessment for the site gives a carcinogenic risk associated with the presence of As in surface waters and soils, and a health risk for long exposures; so, trigger levels of these elements are high enough to warrant further investigation.  相似文献   
485.
Contaminations of groundwater by heavy metals due to agricultural activities are growing recently. The objective of this study was to evaluate and map regional patterns of heavy metals (Cd, Zn and Cu) in groundwater on a plain with high agricultural activities. The study was conducted to investigate the concentration of heavy metals and distribution in groundwater in regions of Shush Danial and Andimeshk aquifers in the southern part of Iran. Presently, groundwater is the only appropriate and widely used source of drinking water for rural and urban communities in this region. The region covers an area of 1,100 km2 between the Dez and Karkhe rivers, which lead to the Persian Gulf. For this study, the region was divided into four sub-regions A, B, C and D. Additionally, 168 groundwater samples were collected from 42 water wells during the earlier months of 2004. The flame atomic absorption spectrometry (AAS-Flame) was used to measure the concentration of heavy metals in water samples and the Surfer software was used for determination of the contour map of metal distribution. The results demonstrated that in all of the samples, Cd and Zn concentrations were below the EPA MCLG and EPA secondary standard, respectively. However, the Cu contents of 4.8 % of all samples were higher than EPA MCL. It is also indicated that the concentrations of metals were more pronounced at the southern part of the studied region than at the others. The analysis of fertilizers applied for agricultural activities at this region also indicated that a great majority of the above-mentioned heavy metals were discharged into the environment. Absence of confining layers, proximity to land surface, excess agricultural activities in the southern part and groundwater flow direction that is generally from the north to the southern parts in this area make the southern region of the Shush plain especially vulnerable to pollution by heavy metals than by other contaminants.  相似文献   
486.
This paper provides an overview of the history and current status of landslide susceptibility and hazard mapping for land-use zoning in Australia. It also describes a case study of landslide hazard mapping in a medium density, coastal, suburban residential area of metropolitan Sydney, New South Wales, Australia, with relatively steep terrain. Issues covered include identification and mapping of existing and potential landslides, and susceptibility and hazard zoning for regulatory management and land-use planning. The method involves application of the principles contained within the AGS (2000) guideline, and as updated by the AGS (2007 a,b,c,d,e) suite of guidelines.  相似文献   
487.
488.
Grain shape is a key factor affecting the mechanical properties of granular materials. However, grain shape quantification techniques to distinguish one granular material from another have not reached a stage of development for inclusion in modeling the behavior of granular materials. Part of the problem is the equipment of choice for grain shape measurement is the scanning electron microscopes. This is a relatively expensive and complex device. In this paper, we investigate a practical approach using light microscopy to quantify grain shape and to identify the key shape parameters that can distinguish grains. A light microscope was found to produce grain images with sufficient quality for the purpose of observing the grain shape profile. Several grain shape parameters were determined for eight different sands. We found Circularity, Roundness, Compactness, Sphericity, Aspect Ratio and ModRatio to be the key shape parameters that differentiate these sand grains.  相似文献   
489.
The Qinghai–Tibet Highway and Railway (the Corridor) across the Qinghai–Tibet Plateau traverses 670 km of permafrost and seasonally frozen-ground in the interior of the Plateau, which is sensitive to climatic and anthropogenic environmental changes. The frozen-ground conditions for engineering geology along the Corridor is complicated by the variability in the near-surface lithology, and the mosaic presence of warm permafrost and talik in a periglacial environment. Differential settlement is the major frost-effect problem encountered over permafrost areas. The traditional classification of frozen ground based on the areal distribution of permafrost is too generalized for engineering purposes and a more refined classification is necessary for engineering design and construction. A proposed classification of 51 zones, sub-zones, and sections of frozen ground has been widely adopted for the design and construction of foundations in the portion of the Corridor studied. The mean annual ground temperature (MAGT), near-surface soil types and moisture content, and active faults and topography are most commonly the primary controlling factors in this classification. However, other factors, such as local microreliefs, drainage conditions, and snow and vegetation covers also exert important influences on the features of frozen ground. About 60% of the total length of the Corridor studied possesses reasonably good frozen-ground conditions, which do not need special mitigative measures for frost hazards. However, other sections, such as warm and ice-rich or -saturated permafrost, particularly in the sections in wetlands, ground improvement measures such as elevated land bridges and passive or proactive cooling techniques need to be applied to ensure the long-term stability of thermally unstable, thick permafrost subsoils, and/or refill with non-frost-susceptible soils. Due to the long-history of the construction and management of the Corridor by various government departments, adverse impacts of construction and operation on the permafrost environment have been resulted. It is recommended that an integrated, executable plan for the routing of major construction projects within this transportation corridor be established and long-term monitoring networks installed for evaluating and mitigating the impact from anthropogenic and climatic changes in frozen-ground conditions.  相似文献   
490.
The paper [Wang, J.-J., Zhu, J.-G., Chiu, C.F., Zhang, H., 2007. Experimental study on fracture toughness and tensile strength of a clay. Engineering Geology 94, 64–75.] focuses on two important fracture parameters of soils: tensile strength and fracture toughness. These parameters control the behaviour of soils in a wide range of situations, from the design of a simple footing to much complicated fracture behaviour of clay liners or covers. The authors have done extensive laboratory work to determine these two parameters and their laborious and complicated experimental program needs praise. However, some of the points raised in their conclusions, based on the analysis and comparison with the data from the literature, need to be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号