Many research tools for lahar hazard assessment have proved wholly unsuitable for practical application to an active volcanic system where field measurements are challenging to obtain. Two simple routing models, with minimal data demands and implemented in a geographical information system (GIS), were applied to dilute lahars originating from Soufrière Hills Volcano, Montserrat. Single-direction flow routing by path of steepest descent, commonly used for simulating normal stream-flow, was tested against LAHARZ, an established lahar model calibrated for debris flows, for ability to replicate the main flow routes. Comparing the ways in which these models capture observed changes, and how the different modelled paths deviate can also provide an indication of where dilute lahars, do not follow behaviour expected from single-phase flow models. Data were collected over two field seasons and provide (1) an overview of gross morphological change after one rainy season, (2) details of dominant channels at the time of measurement, and (3) order of magnitude estimates of individual flow volumes. Modelling results suggested both GIS-based predictive tools had associated benefits. Dominant flow routes observed in the field were generally well-predicted using the hydrological approach with a consideration of elevation error, while LAHARZ was comparatively more successful at mapping lahar dispersion and was better suited to long-term hazard assessment. This research suggests that end-member models can have utility for first-order dilute lahar hazard mapping. 相似文献
The paper reviews recent advances in studies of electric discharges in the stratosphere and mesosphere above thunderstorms,
and their effects on the atmosphere. The primary focus is on the sprite discharge occurring in the mesosphere, which is the
most commonly observed high altitude discharge by imaging cameras from the ground, but effects on the upper atmosphere by
electromagnetic radiation from lightning are also considered. During the past few years, co-ordinated observations over Southern
Europe have been made of a wide range of parameters related to sprites and their causative thunderstorms. Observations have
been complemented by the modelling of processes ranging from the electric discharge to perturbations of trace gas concentrations
in the upper atmosphere. Observations point to significant energy deposition by sprites in the neutral atmosphere as observed
by infrasound waves detected at up to 1000 km distance, whereas elves and lightning have been shown significantly to affect
ionization and heating of the lower ionosphere/mesosphere. Studies of the thunderstorm systems powering high altitude discharges
show the important role of intracloud (IC) lightning in sprite generation as seen by the first simultaneous observations of
IC activity, sprite activity and broadband, electromagnetic radiation in the VLF range. Simulations of sprite ignition suggest
that, under certain conditions, energetic electrons in the runaway regime are generated in streamer discharges. Such electrons
may be the source of X- and Gamma-rays observed in lightning, thunderstorms and the so-called Terrestrial Gamma-ray Flashes
(TGFs) observed from space over thunderstorm regions. Model estimates of sprite perturbations to the global atmospheric electric
circuit, trace gas concentrations and atmospheric dynamics suggest significant local perturbations, and possibly significant
meso-scale effects, but negligible global effects. 相似文献
Laminar sheetflows, transporting sediment at their capacity rates, both with and without rainfall disturbance, were investigated. Values of flow depth and relative submergence were very small. In the flows without rainfall, measured velocities exceeded the predictions of the smooth-surface, clear-water laminar model by an average of 12 per cent. Reduced flow resistance due to high sediment concentrations may explain this result. Velocities in the rainfall-disturbed flows were not significantly different from the predictions of the smooth-surface, clear-water model, and the velocity reduction due to rainfall was about 12 per cent. Although the uniformity of rainfall intensity under the single-nozzle rainfall simulator is high, variation of momentum and kinetic energy fluxes along the 1-5 m long flume was significant. The rainfall angle of incidence was highly correlated with deviations from expected flow velocities in the upper and lower sections of the flume. 相似文献
The Malpica–Tui complex (NW Iberian Massif) consists of a Lower Continental Unit of variably deformed and recrystallized granitoids, metasediments and sparse metabasites, overridden by an upper unit with rocks of oceanic affinities. Metamorphic minerals dated by the 40Ar/39Ar method record a coherent temporal history of progressive deformation during Variscan metamorphism and exhumation. The earliest stages of deformation (D1) under high-pressure conditions are recorded in phengitic white micas from eclogite-facies rocks at 365–370 Ma. Following this eclogite-facies peak-metamorphism, the continental slab became attached to the overriding plate at deep-crustal levels at ca. 340–350 Ma (D2). Exhumation was accompanied by pervasive deformation (D3) within the continental slab at ca. 330 Ma and major deformation (D4) in the underlying para-autochthon at 315–325 Ma. Final tectonothermal evolution included late folding, localized shearing and granitic intrusions at 280–310 Ma.
Dating of high-pressure rocks by the 40Ar/39Ar method yields ages that are synchronous with published Rb–Sr and Sm–Nd ages obtained for both the Malpica–Tui complex and its correlative, the Champtoceaux complex in the French Armorican Massif. The results indicate that phengitic white mica retains its radiogenic argon despite been subjected to relatively high temperatures (500–600 °C) for a period of 20–30 My corresponding to the time-span from the static, eclogite-facies M1 peak-metamorphism through D1-M2 eclogite-facies deformation to amphibolite-facies D2-M3. Our study provides additional evidence that under certain geological conditions (i.e., strain partitioning, fluid deficiency) argon isotope mobility is limited at high temperatures, and that 40Ar/39Ar geochronology can be a reliable method for dating high pressure metamorphism. 相似文献
Final Gondwana amalgamation was marked by the closure of the Neoproterozoic Clymene ocean between the Amazonia craton and central Gondwana. The events which occurred in the last stage of this closure were recorded in the upper Alto Paraguai Group in the foreland of the Paraguay orogen. Outcrop-based facies analysis of the siliciclastic rocks of upper Alto Paraguai Group, composed of the Sepotuba and Diamantino Formations, was carried out in the Diamantino region, within the eastern part of the Barra dos Bugres basin, Mato Grosso state, central-western Brazil. The Sepotuba Formation is composed of sandy shales with planar to wave lamination interbedded with fine-grained sandstone with climbing ripple cross-lamination, planar lamination, swaley cross-stratification and tangential to sigmoidal cross-bedding with mud drapes, related to marine offshore deposits. The lower Diamantino Formation is composed of a monotonous, laterally continuous for hundreds of metres, interbedded siltstone and fine-grained sandstone succession with regular parallel lamination, climbing ripple cross-lamination and ripple-bedding interpreted as distal turbidites. The upper part of this formation consists of fine to medium-grained sandstones with sigmoidal cross-bedding, planar lamination, climbing ripple cross-lamination, symmetrical to asymmetrical and linguoid ripple marks arranged in lobate sand bodies. These facies are interbedded with thick siltstone in coarsening upward large-scale cycles related to a delta system. The Sepotuba Formation characterises the last transgressive deposits of the Paraguay basin representing the final stage of a marine incursion of the Clymene ocean. The progression of orogenesis in the hinterland resulted in the confinement of the Sepotuba sea as a foredeep sub-basin against the edge of the Amazon craton. Turbidites were generated during the deepening of the basin. The successive filling of the basin was associated with progradation of deltaic lobes from the southeast, in a wide lake or a restricted sea that formed after 541 ± 7 Ma. Southeastern to east dominant Neoproterozoic source regions were confirmed by zircon grains that yielded ages around 600 to 540 Ma, that are interpreted to be from granites in the Paraguay orogen. This overall regressive succession recorded in the Alto Paraguai Group represents the filling up of a foredeep basin after the final amalgamation of western Gondwana in the earliest Phanerozoic. 相似文献
Summary
Atmospheric backscattering from aerosol particulates has been measured over the Atlantic at 10.6 μm wavelength with an airborne,
coherent heterodyne, lidar, and corresponding air mass back trajectories have been calculated. These back trajectories (usually
extended up to 10 days prior to the backscatter measurement) have shown very diverse origins for the air parcels at different
altitudes. In many cases it has been possible to attribute the observed levels of scattering to these origins over oceanic,
arctic, continental, industrial etc. regions. This is illustrated by 6 flight records: out of Ascension Island in the South
Atlantic; over the Azores in the mid North Atlantic; over the UK and the North Sea; and in the Arctic along 71° North. In
each of these regions the profiles of backscatter versus altitude show highly variable features; remarkably different origins
for air masses at different altitudes are evident from the corresponding back trajectory analyses. It is thus possible for
the first time to present probable explanations for the different levels of scattering observed at different altitudes.
Received July 14, 2000 Revised May 14, 2001 相似文献
Cosmogonical theories as well as recent observations allow us to expect the existence of numerous exo-planets, including in binaries. Then arises the dynamical problem of stability for planetary orbits in double star systems. Modern computations have shown that many such stable orbits do exist, among which we consider orbits around one component of the binary (called S-type orbits). Within the framework of the elliptic plane restricted three-body problem, the phase space of initial conditions for fictitious S-type planetary orbits is systematically explored, and limits for stability had been previously established for four nearby binaries which components are nearly of solar type. Among stable orbits, found up to distance of their sun of the order of half the binarys periastron distance, nearly-circular ones exist for the three binaries (among the four) having a not too high orbital eccentricity. In the first part of the present paper, we compare these previous results with orbits around a 16 Cyg B-like binarys component with varied eccentricities, and we confirm the existence of stable nearly-circular S-type planetary orbits but for very high binarys eccentricity. It is well-known that chaos may destroy this stability after a very long time (several millions years or more). In a first paper, we had shown that a stable planetary orbit, although chaotic, could keep its stability for more than a billion years (confined chaos). Then, in the second part of the present paper, we investigate the chaotic behaviour of two sets of planetary orbits among the stable ones found around 16 Cyg B-like components in the first part, one set of strongly stable orbits and the other near the limit of stability. Our results show that the stability of the first set is not destroyed when the binarys eccentricity increases even to very high values (0.95), but that the stability of the second set is destroyed as soon as the eccentricity reaches the value 0.8. 相似文献
Eclipsing binary TX UMa was observed with the D.A.O. high-dispersion spectrographs in 1969–1970, with emphasis on the detailed coverage of the primary minimum. One spectrum was taken exclusively within totality, thus exhibiting an uncontaminated spectrum of the secondary component. This leads to spectral reclassification of the secondary (F6 IV). The narrowing of the line profile of the H-line in totality is interpreted in terms of synchronous rotation of the secondary (v sini80 km s–1) while the primary rotates faster (v sini130 km s–1) than synchronously (v sini50 km s–1). Although the secondary does not fill in its Roche lobe fully, the system exhibits pronounced indications of rather strong physical interaction. This is now supported also by the profound changes of the line profiles of the H-line with phase. 相似文献
The Laingsburg depocentre of the SW Karoo Basin, South Africa preserves a well-exposed 1200 m thick succession of upper Permian strata that record the early filling of a basin during an icehouse climate. Uniformly fine-grained sandstones were derived from far-field granitic sources, possibly in Patagonia, although the coeval staging and delivery systems are not preserved. Early condensed shallow marine deposits are overlain by distal basin plain siltstone-prone turbidites and volcanic ashes. An order of magnitude increase in siliciclastic input to the basin plain is represented by up to 270 m of siltstone with thin sandstone turbidites (Vischkuil Formation). The upper Vischkuil Formation comprises three depositional sequences, each bounded by a regionally developed zone of soft sediment deformation and associated 20-45 m thick debrite that represent the initiation of a major sand delivery system. The overlying 300 m thick sandy basin-floor fan system (Unit A) is divisible into three composite sequences arranged in a progradational-aggradational-retrogradational stacking pattern, followed by up to 40 m of basin-wide hemipelagic claystone. This claystone contains Interfan A/B, a distributive lobe system that lies 10 m beneath Unit B, a sandstone-dominated succession that averages 150 m thickness and is interpreted to represent a toe of slope channelized lobe system. Unit B and the A/B interfan together comprise 4 depositional sequences in a composite sequence with an overall basinward-stepping stacking pattern, overlain by 30 m of hemipelagic claystone. The overlying 400 m thick submarine slope succession (Fort Brown Formation) is characterized by 10-120 m thick sand-prone to heterolithic packages separated by 30-70 m thick claystone units. On the largest scale the slope stratigraphy is defined by two major cycles interpreted as composite sequence sets. The lower cycle comprises lithostratigraphic Units B/C, C and D while the upper cycle includes lithostratigraphic Units D/E, E and F. In each case a sandy basal composite sequence is represented by an intraslope lobe (Units B/C and D/E respectively). The second composite sequence in each cycle (Units C and E respectively) is characterized by slope channel-levee systems with distributive lobes 20-30 km down dip. The uppermost composite sequence in each cycle (Units D and F respectively) are characterised by deeply entrenched slope valley systems. Most composite sequences comprise three sequences separated by thin (<5 m thick) claystones. Architectural style is similar at individual sequence scale for comparable positions within each composite sequence set and each composite sequence. The main control on stratigraphic development is interpreted as late icehouse glacio-eustasy but along-strike changes associated with changing shelf edge delivery systems and variable bathymetry due to differential substrate compaction complicate the resultant stratigraphy. 相似文献
Four ureilites (Dyalpur, Goalpara, Haverö, and Novo Urei) were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, and U. An attempt has been made to resolve the data into contributions from the parent ultramafic rock and the injected, carbon- and gas-rich vein material. Interelement correlations, supported by analyses of separated vein material (WANKE et al, 1972), suggest that the vein material is enriched about 10-fold in refractory Ir and Re over moderately volatile Ni and Au, and is low in volatiles except Ge, C, and noble gases. It appears to be a refractory-rich nebular condensate that precipitated carbon by surface catalytic reactions at ˜500K and trapped noble gases but few other volatiles. The closest known analogue is a Cr- and C-rich fraction from the Allende meteorite, highly enriched in heavy noble gases and noble metals. By analogy with Allende, the gas-bearing phase in ureilites may have been an Fe, Cr-sulfide.
The ultramafic rock contains siderophiles and chalcophiles (Ni, Au, Ge, S, Se) at ˜0.05 of Cl chondrite level, and highly volatile elements (Rb, Cs, Bi, Tl, Br, Te, In, Cd) at ˜0.01 Cl level. It probably represents the residue from partial melting of a C3V-like chondrite body, under conditions where phase separation was incomplete so that some liquid was retained. The vein material was injected into this rock at some later time. 相似文献