首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74354篇
  免费   982篇
  国内免费   643篇
测绘学   2248篇
大气科学   5720篇
地球物理   14310篇
地质学   25364篇
海洋学   6148篇
天文学   17595篇
综合类   231篇
自然地理   4363篇
  2021年   527篇
  2020年   563篇
  2019年   611篇
  2018年   1493篇
  2017年   1431篇
  2016年   1878篇
  2015年   1167篇
  2014年   1915篇
  2013年   3768篇
  2012年   1937篇
  2011年   2577篇
  2010年   2306篇
  2009年   3013篇
  2008年   2708篇
  2007年   2667篇
  2006年   2584篇
  2005年   2288篇
  2004年   2169篇
  2003年   2076篇
  2002年   1983篇
  2001年   1800篇
  2000年   1724篇
  1999年   1608篇
  1998年   1524篇
  1997年   1524篇
  1996年   1303篇
  1995年   1239篇
  1994年   1189篇
  1993年   1087篇
  1992年   1008篇
  1991年   978篇
  1990年   1084篇
  1989年   980篇
  1988年   913篇
  1987年   1057篇
  1986年   896篇
  1985年   1177篇
  1984年   1306篇
  1983年   1250篇
  1982年   1210篇
  1981年   1089篇
  1980年   997篇
  1979年   946篇
  1978年   924篇
  1977年   856篇
  1976年   804篇
  1975年   721篇
  1974年   825篇
  1973年   827篇
  1972年   522篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Monocrystalline quartz inclusions in garnet and omphacite from various eclogite samples from the Lanterman Range (Northern Victoria Land, Antarctica) have been investigated by cathodoluminescence (CL), Raman spectroscopy and imaging, and in situ X‐ray (XR) microdiffraction using the synchrotron. A few inclusions, with a clear‐to‐opalescent lustre, show ‘anomalous’ Raman spectra characterized by weak α‐quartz modes, the broadening of the main α‐quartz peak at 465 cm?1, and additional vibrations at 480–485, 520–523 and 608 cm?1. CL and Raman imaging indicate that this ‘anomalous’α‐quartz occurs as relicts within ordinary α‐quartz, and that it was preserved in the internal parts of small quartz inclusions. XR diffraction circular patterns display irregular and broad α‐quartz spots, some of which show an anomalous d‐spacing tightening of ~2%. They also show some very weak, hazy clouds that have d‐spacing compatible with coesite but not with α‐quartz. Raman spectrometry and XR microdiffraction characterize the anomalies with respect to α‐quartz as (i) a pressure‐induced disordering and incipient amorphization, mainly revealed by the 480–485 and 608‐cm?1 Raman bands, together with (ii) a lattice densification, evidenced by d‐spacing tightening; (iii) the cryptic development of coesite, 520–523 cm?1 being the main Raman peak of coesite and (iv) Brazil micro‐twinning. This ‘anomalous’α‐quartz represents the first example of pressure‐induced incipient amorphization of a metastable phase in a crustal rock. This issue is really surprising because pressure‐induced amorphization of metastable α‐quartz, observed in impactites and known to occur between 15 and 32 GPa during ultrahigh‐pressure (UHP) experiments at room temperature, is in principle irrelevant under normal geological P–T conditions. A shock (due to a seism?) or a local overpressure at the inclusion scale (due to expansion mismatch between quartz and its host mineral) seem the only geological mechanisms that can produce such incipient amorphization in crustal rocks. This discovery throws new light on the modality of the quartz‐coesite transition and on the pressure regimes (non‐lithostatic v. lithostatic) during high‐pressure/UHP metamorphism. In particular, incipient amorphization of quartz could favour the quartz‐coesite transition, or allow the growth of metastable coesite, as already experimentally observed.  相似文献   
12.
In this work, the factors controlling the formation and preservation of high-pressure mineral assemblages in the metamorphosed orthopyroxene-bearing metagranitoids of the Sandmata Complex, Aravalli-Delhi Mobile Belt (ADMB), northwestern India have been modelled. The rocks range in composition from farsundite through quartz mangerite to opdalite, and with varying K2O, Ca/(Ca + Na)rock and FeOtot + MgO contents. A two stage metamorphic evolution has been recorded in these rocks.
An early hydration event stabilized biotite with or without epidote at the expense of magmatic orthopyroxene and plagioclase. Subsequent high-pressure granulite facies metamorphism (∼15 kbar, ∼800 °C) of these hydrated rocks produced two rock types with contrasting mineralogy and textures. In the non-migmatitic metagranitoids, spectacular garnet ± K-feldspar ± quartz corona was formed around reacting biotite, plagioclase, quartz and/or pyroxene. In contrast, biotite ± epidote melting produced migmatites, containing porphyroblastic garnet incongruent solids and leucosomes.
Applying NCKFMASHTO T–M (H2O) and P–T pseudosection modelling techniques, it is demonstrated that the differential response of these magmatic rocks to high-pressure metamorphism is primarily controlled by the scale of initial hydration. Rocks, which were pervasively hydrated, produced garnetiferous migmatites, while for limited hydration, the same metamorphism formed sub-solidus garnet-bearing coronae. Based on the sequence of mineral assemblage evolution and the mineral compositional zoning features in the two metagranitoids, a clockwise metamorphic P–T path is constrained for the high-pressure metamorphic event. The finding has major implications in formulating geodynamic model of crustal amalgamation in the ADMB.  相似文献   
13.
Reconnaissance seismic shot in 1971/72 showed a number of well defined seismic anomalies within the East Sengkang Basin which were interpreted as buried reefs. Subsequent fieldwork revealed that Upper Miocene reefs outcropped along the southern margin of the basin. A drilling programme in 1975 and 1976 proved the presence of shallow, gas-bearing, Upper Miocene reefs in the northern part of the basin. Seismic acquisition and drilling during 1981 confirmed the economic significance of these discoveries, with four separate accumulations containing about 750 × 109 cubic feet of dry gas in place at an average depth of 700 m. Kampung Baru is the largest field and contains over half the total, both reservoir quality and gas deliverability are excellent. Deposition in the East Sengkang Basin probably started during the Early Miocene. A sequence of Lower Miocene mudstones and limestones unconformably overlies acoustic basement which consists of Eocene volcanics. During the tectonically active Middle Miocene, deposition was interrupted by two periods of deformation and erosion. Carbonate deposition became established in the Late Miocene with widespread development of platform limestones throughout the East Sengkang Basin. Thick pinnacle reef complexes developed in the areas where reef growth could keep pace with the relative rise in sea level. Most reef growth ceased at the end of the Miocene and subsequent renewed clastic sedimentation covered the irregular limestone surface. Late Pliocene regression culminated in the Holocene with erosion. The Walanae fault zone, part of a major regional sinistral strike-slip system, separates the East and West Sengkang Basins. Both normal and reverse faulting are inferred from seismic data and post Late Pliocene reverse faulting is seen in outcrop.  相似文献   
14.
The metasediments in the Chamba region experienced three phases of deformation: DF1, DF2 and DF3.Folded quartz veins are co-folded with the F2 crenulation folds. Their geometric and tectonic significance is studied by microstructures and shortening adjacent to the discrete crenulation cleavage, S2. Microstructures of folded vein segments, their geometric changes and truncation to cleavage (S2) are mainly due to pressure-solution phenomena and the estimated volume loss from reconstructed vein segments range from 16 to 25.5%,which is closely related to volume decrease (26%) calculated from the polydeformed slates of North Wales areas.  相似文献   
15.
16.
SHRIMP dating of xenotime overgrowths on detrital zircon grains can constrain maximum durations since diagenesis and therefore provide minimum dates of sediment deposition. Thus, xenotime dating has significant economic application to Precambrian sediment-hosted ore deposits, such as Witwatersrand Au–U, for which there are no precise depositional ages. The growth history of xenotime in the Witwatersrand Supergroup is texturally complex, with several phases evident. The oldest authigenic xenotime 207Pb/206Pb age obtained in sandstone underlying the Vaal Reef is 2764 ± 5 Myr (1 σ), and most likely represents a mixture of diagenetic and hydrothermal growth. Nevertheless, this represents the oldest authigenic mineral age yet recorded in the sequence and provides a minimum age of deposition. Other xenotime data record a spread of ages that correspond to numerous post-diagenetic thermotectonic events (including a Ventersdorp event at ≈ 2720 Ma) up to the ≈2020 Ma Vredefort event.  相似文献   
17.
We report intermediate resolution H spectroscopy of the black hole candidate Nova Muscae 1991 during quiescence. We classify the companion star as a K3-K4V which contributes 85±6 percent to the total flux from the binary. The photospheric absorption lines are broadened by 106±13 kms−1 with respect to template field stars, leading to a system mass ratio of q =M1/M2 = 7.8−2.0+3.4. Doppler imaging of the H line shows strong emission coming from the secondary star (EW=3.1±0.6Å) which we associate with chromospheric activity. However, the hot-spot is not detected and this may indicate a lower mass transfer rate than in other X-ray transients of comparable orbital periods. The surface brightness distribution of the accretion disk in H follows a relation I∝R−1.1, less steep than typically observed in cataclysmic variables. Updated system parameters are also presented.  相似文献   
18.
19.
We have examined several MSA (methanesulfonic acid) records from the upper 200 m of the Antarctic ice sheet and in particular the new Dome F profile. At all the four sites studied, concentration profiles exhibit similar patterns as a function of depth. They suggest that snow metamorphism and solid phase migration are responsible for a marked release of gaseous MSA to interstitial firn air as well as probably to the free atmosphere, in particular at extremely low accumulation sites. Snow acidity can also modify MSA concentration. It is proposed that, below the upper few metres where the communication with the free atmosphere is possible, gaseous MSA may remain in the firn layers and be entrapped later in air bubbles at pore close-off, i.e. when firn is transformed into ice. Chemical measurements on the firn core do not take into account the MSA released to the gaseous phase, but this fraction is measurable in ice samples. In spite of these alterations occurring in the firn layers, relative changes of the atmospheric MSA concentration in the past are probably still there deep within the Antarctic ice sheet. However, for glacial periods, different processes have to be considered in relation to modified aerosol properties.  相似文献   
20.
The stratigraphical context of two Middle Pleistocene fossiliferous palaeosols from Central Italy (Abruzzo and Tuscany) have been studied. Small mammals and molluscs occur in both palaeosols, which are covered by tephra layers that were analysed using an interdisciplinary approach. Application of fission‐track dating to apatites separated from the Case Picconetto tephra (Pescara, Abruzzo), yielded an age of 0.48 ± 0.04 Ma, indistinguishable from those previously determined for the Campani Quarry (Lower Valdarno, Tuscany) (0.46 ± 0.05 Ma and 0.48 ± 0.05 Ma). Geochemical and petrographic investigations indicate that these tephra originated from different volcanoes, the Alban Hills Volcanic Complex and the Vico Volcano (Latium) respectively. Small mammal and mollusc assemblages indicate different palaeoclimatic and palaeoenvironmental conditions for the Case Picconetto and Campani Quarry palaeosols. Warm and humid conditions can be inferred for the Campani Quarry site, whereas open and cold conditions can be inferred for Case Picconetto. On the basis of faunal data, fission‐track dates and attribution of tephra to specific volcanic eruptions, we suggest a correlation of these faunas with marine oxygen isotope stage 14 (Case Picconetto) and with marine oxygen isotope stage 11 (Campani Quarry), respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号