首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   4篇
  国内免费   2篇
测绘学   1篇
地球物理   13篇
地质学   8篇
海洋学   3篇
天文学   1篇
  2023年   1篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2006年   1篇
  1987年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
11.
Natural hazards constitute a diverse category and are unevenly distributed in time and space. This hinders predictive efforts, leading to significant impacts on human life and economies. Multi-hazard prediction is vital for any natural hazard risk management plan. The main objective of this study was the development of a multi-hazard susceptibility mapping framework, by combining two natural hazards—flooding and landslides—in the North Central region of Vietnam. This was accomplished using support vector machines, random forest, and AdaBoost. The input data consisted of 4591 flood points, 1315 landslide points, and 13 conditioning factors, split into training (70%), and testing (30%) datasets. The accuracy of the models' predictions was evaluated using the statistical indices root mean square error, area under curve (AUC), mean absolute error, and coefficient of determination. All proposed models were good at predicting multi-hazard susceptibility, with AUC values over 0.95. Among them, the AUC value for the support vector machine model was 0.98 and 0.99 for landslide and flood, respectively. For the random forest model, these values were 0.98 and 0.98, and for AdaBoost, they were 0.99 and 0.99. The multi-hazard maps were built by combining the landslide and flood susceptibility maps. The results showed that approximately 60% of the study area was affected by landslides, 30% by flood, and 8% by both hazards. These results illustrate how North Central is one of the regions of Vietnam that is most severely affected by natural hazards, particularly flooding, and landslides. The proposed models adapt to evaluate multi-hazard susceptibility at different scales, although expert intervention is also required, to optimize the algorithms. Multi-hazard maps can provide a valuable point of reference for decision makers in sustainable land-use planning and infrastructure development in regions faced with multiple hazards, and to prevent and reduce more effectively the frequency of floods and landslides and their damage to human life and property.  相似文献   
12.
In the Bach Dang–Cam Estuary, northern Vietnam, mechanisms governing cohesive sediment aggregation were investigated in situ in 2008–2009. As part of the Red River delta, this estuary exhibits a marked contrast in hydrological conditions between the monsoon and dry seasons. The impact on flocculation processes was assessed by means of surveys of water discharge, suspended particulate matter concentration and floc size distributions (FSDs) conducted during a tidal cycle at three selected sites along the estuary. A method was developed for calculating the relative volume concentration for the modes of various size classes from FSDs provided by the LISST 100X (Sequoia Scientific Inc.). It was found that all FSDs comprised four modes identified as particles/flocculi, fine and coarse microflocs, and macroflocs. Under the influence of the instantaneous turbulent kinetic energy, their proportions varied but without significant modification of their median diameters. In particular, when the turbulence level corresponded to a Kolmogorov microscale of less than ∼235 μm, a major breakup of flocs resulted in the formation of particles/flocculi and fine microflocs. Fluctuations in turbulence level were governed by seasonal variations in freshwater discharge and by the tidal cycle. During the wet season, strong freshwater input induced a high turbulent energy level that tended to generate sediment transfer from the coarser size classes (macroflocs, coarse microflocs) to finer ones (particles/flocculi and fine microflocs), and to promote a transport of sediment seawards. During the dry season, the influence of tides predominated. The turbulent energy level was then only episodically sufficiently high to generate transfer of sediment between floc size classes. At low turbulent energy, modifications in the proportions of floc size classes were due to differential settling. Tidal pumping produced a net upstream transport of sediment. Associated with the settling of sediment trapped in a near-bed layer at low turbulent energy, this causes the silting up of the waterways leading to the harbour of Haiphong.  相似文献   
13.
A method of using the standard network weather station data for local ecosystem research is considered on the example of the modern climate of the Cát Tiên National Park (Southern Vietnam) and local climate change in 1980–2010. Special attention is focused on the environmental parameters, which play a role of the limiting factors. It is shown that the climate of Southern Vietnam responds with statistical significance to global climate change. Suggestions about the possible reactions of tropical monsoon forest ecosystem to climate change are given.  相似文献   
14.
We present the gauge models based on SU(3)C⊗ SU(3)L ⊗ U(1)N (3-3-1) group which contain particles satisfying conditions for dark matter. There are two such models: one with exotic positive charged lepton and a variant with right-handed neutrinos. The scalar self-interacting dark matters are stable without imposing of new symmetry and should be weak-interacting. PACS Nos: 95.35.+d, 12.60.Fr, 14.80.Cp  相似文献   
15.
16.
The seismic reflection method provides high-resolution data that are especially useful for discovering mineral deposits under deep cover. A hindrance to the wider adoption of the seismic reflection method in mineral exploration is that the data are often interpreted differently and independently of other geophysical data unless common earth models are used to link the methods during geological interpretation. Model-based inversion of post-stack seismic data allows rock units with common petrophysical properties to be identified and permits increased bandwidth to enhance the spatial resolution of the acoustic-impedance model. However, as seismic reflection data are naturally bandlimited, any inversion scheme depends upon an initial model, and must deal with non-unique solutions for the inversion. Both issues can be largely overcome by using constraints and integrating prior information. We exploit the abilities of fuzzy c-means clustering to constrain and to include prior information in the inversion. The use of a clustering constraint for petrophysical values pushes the inversion process to select models that are primarily composed of several discrete rock units and the fuzzy c-means algorithm allows some properties to overlap by varying degrees. Imposing the fuzzy clustering techniques in the inversion process allows solutions that are similar to the natural geologic patterns that often have a few rock units represented by distinct combinations of petrophysical characteristics. Our tests on synthetic models, with clear and distinct boundaries, show that our methodology effectively recovers the true model. Accurate model recovery can be obtained even when the data are highly contaminated by random noise, where the initial model is homogeneous, or there is minimal prior petrophysical information available. We demonstrate the abilities of fuzzy c-means clustering to constrain and to include prior information in the acoustic-impedance inversion of a challenging magnetotelluric/seismic data set from the Carlin Gold District, USA. Using fuzzy c-means guided inversion of magnetotelluric data to create a starting model for acoustic-impedance proved important in obtaining the best result. Our inversion results correlate with borehole data and provided a better basis for geological interpretation than the seismic reflection images alone. Low values of the acoustic impedance in the basement rocks were shown to be prospective by geochemical analysis of rock cores, as would be predicted for later gold mineralization in weak, decalcified rocks.  相似文献   
17.
Lagoonal tidal inlets are a typical morphology of the Central Coast of Vietnam. Recently, navigation channels in these inlets have become increasingly threatened by siltation. This study analyses the relations between sediment distribution and transport trends (using the technique of Sediment Trend Analysis-STA■) in the lagoonal system of the De Gi inlet and then proposes appropriate countermeasures against sand deposition in the navigation channel. The STA identified three types of transport trends in the De Gi inlet, namely dynamic equilibrium, net accretion, and net erosion. Processes associated with the tidal prism have resulted in trends of sediment transport and deposition across the flood and ebb tidal shoals, which maintain a present cross-sectional area of about 1000m^2. However, longshore sediment transport from north to south resulting from northeast waves cause additional sand deposition in the channel. In addition, the effects of refraction associated with a nearby headland and jetty also increase sedimentation. These processes provide the main reasons for sediment deposition in the De Gi inlet. Short term and regular dredging helps to maintain the navigation channel. A system comprised of three jetties (north, south, and weir) is necessary to ensure the longterm cross-sectional stability of the navigation channel.  相似文献   
18.
Potential evapotranspiration (ETP) is an important part of a climatic water balance and a crucial variable in many kinds of models in computing actual evapotranspiration. The objective of this study was to find a reasonable approach of ETP calculation for a height‐differentiated landscape in subtropical climate. From the pool of diverse approaches, six common methods [Hamon, Priestley–Taylor, Thornthwaite, Blaney–Criddle, Turc and Food and Agricultural Organization Irrigation and Drainage Paper No. 56 (FAO‐56)] were selected. With the meteorological data for long‐term period (1964–2008), the calculation of ETP values was performed for 12 different meteorological stations in the Red River basin. Among the applied ETP calculation methods, the Turc and the FAO‐56 methods agreed well at most stations and represent best the expectations for the ETP values of the Thao and Da subbasins. The findings of our investigations indicate that in highly structured (land use and elevation) regions, not all methods provide satisfying results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
19.
This paper presents the use of stable isotopes of water for hydrological characterization and flow component partitioning in the Red River Delta (RRD), the downstream section of the Red River. Water samples were collected monthly during 2015 from the mainstream section of the river and its right bank tributaries flowing through the RRD. In general, δ18O and δ2H river signatures were depleted in summer–autumn (May–October) and elevated in winter–spring (November–April), displaying seasonal variation in response to regional monsoon air mass contest. The Pacific equatorial–maritime air mass dominates in summer and the northern Asia continental air mass controls in winter. Results show that water of the RRD tributaries stems solely from local sources and is completely separated from water arriving from upstream subbasins. This separation is due to the extensive management of the RRD (e.g., dykes and dams) for the purposes of irrigation and inundation prevention. Mainstream river section δ18O and δ2H compositions range from ?10.58 and ?73.74‰ to ?6.80 and ?43.40‰, respectively, and the corresponding ranges inside the RRD were from ?9.35 and ?64.27‰ to ?2.09 and ?15.80‰. A combination of data analysis and hydrological simulation confirms the role of upstream hydropower reservoirs in retaining and mixing upstream water. River water inside the RRD experienced strong evaporation characterized by depleted d‐excess values, becoming negative in summer. On the other hand, the main stream of the Red River has d‐excess values around 10‰, indicating moderate evaporation. Hydrograph separation shows that in upstream subbasins, the groundwater fraction dominates the river flow composition, especially during low flow regimes. Inside the RRD, the river receives groundwater during the dry season, whereas groundwater replenishment occurs in the rainy season. Annual evaporation obtained from this hydrograph separation computation was about 6.3% of catchment discharge, the same order as deduced from the difference between subbasin precipitation and discharge values. This study shows the necessity to re‐evaluate empirical approaches in large river hydrology assessment schemes, especially in the context of climate change.  相似文献   
20.
Global riverine carbon concentrations and fluxes have been impacted by climate and human-induced changes for many decades. This paper aims to reconstruct the longterm carbon concentrations and carbon fluxes of the Red River, a system under the coupled pressures of environmental change and human activity. Based on (1) the relationships between particulate and dissolved organic carbon (POC, DOC) or dissolved inorganic carbon (DIC), and suspended sediments (TSS) or river water discharge and on (2) the available detailed historical records of river discharge and TSS concentration, the variations of the Red River carbon concentration and flux were estimated for the period 1960–2015. The results show that total carbon flux of the Red River averaged 2555?±?639 kton C year?1. DIC fluxes dominated total carbon fluxes, representing 64% of total, reflecting a strong weathering process from carbonate rocks in the upstream basin. Total carbon fluxes significantly decreased from 2816 kton C year?1 during the 1960s to 1372 kton C year?1 during the 2010s and showed clear seasonal and spatial variations. Organic carbon flux decreased in both quantity and proportion of the total carbon flux from 40.9% in 1960s to 14.9% in 2010s, reflecting the important impact of dam impoundment. DIC flux was also reduced over this period potentially as a consequence of carbonate precipitation in the irrigated, agricultural land and the reduction of the Red River water discharge toward the sea. These decreases in TSS and carbon fluxes are probably partially responsible for different negatives impacts observed in the coastal zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号