首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
大气科学   4篇
地球物理   31篇
地质学   5篇
海洋学   1篇
自然地理   1篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   5篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
41.
Understanding the role of forest fires on water budgets of subarctic Precambrian Shield catchments is important because of growing evidence that fire activity is increasing. Most research has focused on assessing impacts on individual landscape units, so it is unclear how changes manifest at the catchment scale enough to alter water budgets. The objective of this study was to determine the water budget impact of a forest fire that partially burned a ~450 km2 subarctic Precambrian Shield basin. Water budget components were measured in a pair of catchments: one burnt and another unburnt. Burnt and unburnt areas had comparable net radiation, but thaw was deeper in burned areas. There were deeper snow packs in burns. Differences in streamflow between the catchments were within measurement uncertainty. Enhanced winter streamflow from the burned watershed was evident by icing growth at the streamflow gauge location, which was not observed in the unburned catchment. Wintertime water chemistry was also clearly elevated in dissolved organics, and organic-associated nutrients. Application of a framework to assess hydrological resilience of watersheds to wildfire reveal that watersheds with both high bedrock and open water fractions are more resilient to hydrological change after fire in the subarctic shield, and resilience decreases with increasingly climatically wet conditions. This suggests significant changes in runoff magnitude, timing and water chemistry of many Shield catchments following wildfire depend on pre-fire land cover distribution, the extent of the wildfire and climatic conditions that follow the fire.  相似文献   
42.
Determining sources, quantities and travel distances of eroding soil is of increasing importance given its impact on‐ and off‐site, the sediment‐associated transport of nutrients, metals and micro‐organisms and the ongoing need to provide data for soil erosion model development and validation. Many soil tracers have been developed; however, most comprise foreign materials, such as fluorescent beads and rare earth oxides, which cast doubts on the validity of tracing results given their different physical characteristics. To avoid these problems, we have investigated the potential of soil, which has been heated under reducing conditions to enhance its ferrimagnetic content, as a soil erosion tracer; while the technique has been used successfully to trace river sediment it has not been successfully applied to soil erosion studies. For a suite of 16 magnetic concentration‐dependent properties, values were found to be significantly greater, by at least one order of magnitude, after heating, both for the bulk soil and nine individual particle size fractions. Individual size fractions could be differentiated using two different magnetic properties, thus illustrating the technique's potential to provide information on particle size‐specific erosion. Soil box experiments demonstrated the potential for both in situ measurement of magnetic susceptibility and laboratory measurement of the magnetic properties of eroded sediment, to trace and quantify soil erosion. Thus, heated soil, with artificially‐enhanced ferrimagnetic properties, is successfully demonstrated to have great potential as a size‐specific, cost‐effective and representative soil erosion tracer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号