首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49640篇
  免费   7333篇
  国内免费   5861篇
测绘学   2498篇
大气科学   7751篇
地球物理   11388篇
地质学   25250篇
海洋学   4044篇
天文学   2984篇
综合类   4715篇
自然地理   4204篇
  2025年   21篇
  2024年   503篇
  2023年   702篇
  2022年   1274篇
  2021年   1450篇
  2020年   1369篇
  2019年   1284篇
  2018年   5832篇
  2017年   5054篇
  2016年   3939篇
  2015年   1499篇
  2014年   1735篇
  2013年   1524篇
  2012年   2305篇
  2011年   3986篇
  2010年   3364篇
  2009年   3641篇
  2008年   3058篇
  2007年   3418篇
  2006年   1055篇
  2005年   1054篇
  2004年   1108篇
  2003年   1145篇
  2002年   964篇
  2001年   735篇
  2000年   962篇
  1999年   1399篇
  1998年   1140篇
  1997年   1119篇
  1996年   1004篇
  1995年   884篇
  1994年   828篇
  1993年   699篇
  1992年   549篇
  1991年   446篇
  1990年   326篇
  1989年   306篇
  1988年   278篇
  1987年   178篇
  1986年   153篇
  1985年   120篇
  1984年   76篇
  1983年   66篇
  1982年   70篇
  1981年   77篇
  1980年   49篇
  1979年   29篇
  1978年   10篇
  1976年   13篇
  1958年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
In the NW Sub-Himalayan frontal thrust belt in India, seismic interpretation of subsurface geometry of the Kangra and Dehradun re-entrant mismatch with the previously proposed models. These procedures lack direct quantitative measurement on the seismic profile required for subsurface structural architecture. Here we use a predictive angular function for establishing quantitative geometric relationships between fault and fold shapes with ‘Distance–displacement method’ (D–d method). It is a prognostic straightforward mechanism to probe the possible structural network from a seismic profile. Two seismic profiles Kangra-2 and Kangra-4 of Kangra re-entrant, Himachal Pradesh (India), are investigated for the fault-related folds associated with the Balh and Paror anticlines. For Paror anticline, the final cut-off angle \(\beta =35{^{\circ }}\) was obtained by transforming the seismic time profile into depth profile to corroborate the interpreted structures. Also, the estimated shortening along the Jawalamukhi Thrust and Jhor Fault, lying between the Himalayan Frontal Thrust (HFT) and the Main Boundary Thrust (MBT) in the frontal fold-thrust belt, were found to be 6.06 and 0.25 km, respectively. Lastly, the geometric method of fold-fault relationship has been exercised to document the existence of a fault-bend fold above the Himalayan Frontal Thrust (HFT). Measurement of shortening along the fault plane is employed as an ancillary tool to prove the multi-bending geometry of the blind thrust of the Dehradun re-entrant.  相似文献   
72.
Based on calculations of rock fracture surface and angle, incremental-load creep experiments were conducted on two groups of major-defect fractured rock specimens in an RLW-2000 rheology test system. The research investigated the fracture type and the creep properties of major-defect fractured rock and analyzed the relationships between failure load and horizontal or vertical projection distance, and between each of theme and fracture area or angle. The results showed that rock fracture was divided into three types according to the distribution, including I, II, and III types. I, II, and III types were respectively an internal fracture running through neither the upper nor lower end, one through the upper or lower end and one through both upper and lower ends, and a III type was further sub-divided into IIII and IIIII types. The instantaneous strain was larger than the creep strain under the same creep loading stage. As the creep loading increased on two groups of major-defect fractured rock, the instantaneous strain decreased abruptly and then increased abruptly, while the creep strain decreased rapidly at first and later increased near-linearly. When the failure angle was larger than the friction angle, failure load was positively correlated with failure angle yet was negatively correlated with vertical projection distance. Vertical projection distance and fracture angle, which decided fracture type, controlled rock failure load. Failure load increased in turn from I type to III type, and low-type fracture determined mainly failure load in multiply-fracture specimen.  相似文献   
73.
Despite the numerous advantages of crosswell seismic data over surface seismic data, crosswell seismic geophysics is still underutilized and underdeveloped. The factors limiting the full utilization of crosswell data include the lack of standardized methods for processing and imaging the data. This is because crosswell data is not completely understood. To improve the understanding of crosswell data, we performed acoustic and elastic modeling of a west Texas carbonate oilfield data using finite difference methods and crosswell geometry. To account for the different wave modes in the field data, we decomposed the full data into its constituent wave modes. Results of the forward modeling show that elastic synthetic data is a better representation of crosswell field data than the popular acoustic synthetic data. Wavefield decomposition gave insight into the time-space kinematics behavior of the different wave modes that constitute the full data. Overall, the study improved our understanding of crosswell field data. The learning from this study has been utilized to perform data-driven reflection enhancement processing where the discerned characteristic of different seismic arrival is utilize to suppress unwanted and enhanced the desired wave modes. The processing reduced the complex data to only up-going P-P reflections that can be imaged to reveal the subtle geological structures of the oilfield.  相似文献   
74.
Earth System Science (ESS) observational data are often inadequately semantically enriched by geo-observational information systems to capture the true meaning of the associated data sets. Data models underpinning these information systems are often too rigid in their data representation to allow for the ever-changing and evolving nature of ESS domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in a computable way. Object oriented techniques that are typically employed to model data in a complex domain (with evolving domain concepts) can unnecessarily exclude domain specialists from the design process, invariably leading to a mismatch between the needs of the domain specialists, and how the concepts are modelled. In many cases, an over simplification of the domain concept is captured by the computer scientist. This paper proposes that two-level modelling methodologies developed by health informaticians to tackle problems of domain specific use-case knowledge modelling can be re-used within ESS informatics. A translational approach to enable a two-level modelling process within geo-observational sensor systems design is described. We show how the Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard can act as a pragmatic solution for a stable reference-model (necessary for two-level modelling), and upon which more volatile domain specific concepts can be defined and managed using archetypes. A rudimentary use-case is presented, followed by a worked example showing the implementation methodology and considerations leading to an O&M based, two-level modelling design approach, to realise semantically rich and interoperable Earth System Science based geo-observational sensor systems.  相似文献   
75.
The dipole tilt angle has been found to affect Earth’s bow shock. This work presents a quantitative relationship between the dipole tilt angle and the bow shock location and flaring angle. We collected a large data set of bow shock crossings from four different satellites (IMP 8, Geotail, Magion 4, and Cluster), including some recent crossings obtained during 2012–2013. The results from a statistical analysis demonstrate that: (1) the subsolar standoff distance increases but the flaring angle decreases with increasing dipole tilt angle; (2) when the dipole tilt angle changes sign from negative to positive, the dayside bow shock moves toward Earth and the shift can be as much as 2.29 R E, during which the flaring angle increases; and (3) the shape of bow shock in the northern and southern hemispheres differs. For the northern hemisphere bow shock, with increasing positive/negative dipole tilt angle, the flaring angle increases/decreases. While for the southern hemisphere, the trend is the opposite; with increasing positive/negative dipole tilt angle, the flaring angle decreases/increases. These results are helpful for future bow shock modeling that needs to include the effects of dipole tilt angle.  相似文献   
76.
An algorithm for retrieving polarimetric variables from numerical model fields is developed. By using this technique, radar reflectivity at horizontal polarization~ differential reflectivity, specific differential phase shift and correlation coefficients between the horizontal and vertical polarization signals at zero lag can be derived from rain, snow and hail contents of numerical model outputs. Effects of environmental temperature and the melting process on polarimetric variables are considered in the algorithm. The algorithm is applied to the Advanced Regional Prediction System (ARPS) model simulation results for a hail storm. The spatial distributions of the derived parameters are reasonable when compared with observational knowledge. This work provides a forward model for assimilation of dual linear polarization radar data into a mesoscale model.  相似文献   
77.
Since the launch of the first satellite in 1972, ecologists have been equipped with new tools to address the degradation of tropical forests, previously limited by field-based methods. This article is a review of the state of remote sensing technology in characterizing the degradation of tropical forest. The factors responsible for the structural and functional degradation of the tropical forest and its likely impacts are described in view of generating remote sensing based inputs. In order to assess the degradation and utility of geo-informatics tools, 32 parameters are identified. The research developments at different levels of information extraction from the historic to recent periods are elaborated, and future challenges are predicted. The article concludes that an additional momentum of research is required to answer many unresolved questions of tropical forest degradation.  相似文献   
78.
An experimental and theoretical identification of hydrodynamic equilibrium for sediment transport and bed response to wave motion are considered. The comparison between calculations and the results of laboratory experiments indicates the linear relation between sediment transport rate and the thickness zm of bed layer in which sediments are in apparent rectilinear motion. This linear relationship allows to use the first order “upwind” numerical scheme of FDM ensuring an accurate solution of equation for changes in bed morphology. However, it is necessary to carry out a decomposition of the sediment transport into transport in onshore direction during wave crest and offshore direction during wave trough. Further, the shape of bed erosion in response to sediment transport coincides with the trapezoid envelope or with part of it, when some sediments still remain within it. Bed erosion area is equal to the one of a rectangle with thickness znm.  相似文献   
79.
On November 4th 2007, along the Grijalva River in the state of Chiapas, Mexico, has occurred one of the largest landslides ever known. This landslide, known as Juan del Grijalva, destroyed the town of the same name, killing 20 people, and moved 55 million cubic meters of rock and debris down slope to completely block the Grijalva River. In order to understand the characteristics and factors that triggered the Juan del Grijalva landslide, geologic studies were conducted at the site. The results indicate that the landslide was composed of a lithologic sequence of thin-bedded shales and thin to medium-thick-bedded sandstones. This was faulted into several blocks dipping in the same sense as the mass movement. The main triggering factor was the increment of the pore pressure into the lithologic unit due to water saturation after 5 days of heavy rain before the incident. According to records from the last century, the Juan del Grijalva mass movement represents one of the largest mass movements recorded all over the world. The risk conditions of the area after the landslide lead to the rapid construction of an artificial channel to drain the accumulating mass of water upstream and therefore prevent a future catastrophic inundation down stream.  相似文献   
80.
The location of the seismic event hypocenter is the very first task undertaken when studying any seismological problem. The accuracy of the solution can significantly influence consecutive stages of analysis, so there is a continuous demand for new, more efficient and accurate location algorithms. It is important to recognize that there is no single universal location algorithm which will perform equally well in any situation. The type of seismicity, the geometry of the recording seismic network, the size of the controlled area, tectonic complexity, are the most important factors influencing the performance of location algorithms. In this paper we propose a new location algorithm called the extended double difference (EDD) which combines the insensitivity of the double-difference (DD) algorithm to the velocity structure with the special demands imposed by mining: continuous change of network geometry and a very local recording capability of the network for dominating small induced events. The proposed method provides significantly better estimation of hypocenter depths and origin times compared to the classical and double-difference approaches, the price being greater sensitivity to the velocity structure than the DD approach. The efficiency of both algorithms for the epicentral coordinates is similar.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号