首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26127篇
  免费   547篇
  国内免费   1488篇
测绘学   1492篇
大气科学   2504篇
地球物理   4917篇
地质学   12540篇
海洋学   1245篇
天文学   1672篇
综合类   2335篇
自然地理   1457篇
  2024年   4篇
  2023年   28篇
  2022年   74篇
  2021年   97篇
  2020年   61篇
  2019年   83篇
  2018年   4826篇
  2017年   4097篇
  2016年   2660篇
  2015年   317篇
  2014年   203篇
  2013年   122篇
  2012年   1075篇
  2011年   2805篇
  2010年   2091篇
  2009年   2403篇
  2008年   1973篇
  2007年   2429篇
  2006年   96篇
  2005年   256篇
  2004年   461篇
  2003年   488篇
  2002年   311篇
  2001年   115篇
  2000年   128篇
  1999年   137篇
  1998年   134篇
  1997年   104篇
  1996年   83篇
  1995年   86篇
  1994年   74篇
  1993年   66篇
  1992年   53篇
  1991年   38篇
  1990年   34篇
  1989年   23篇
  1988年   12篇
  1987年   12篇
  1986年   16篇
  1985年   8篇
  1984年   3篇
  1983年   7篇
  1982年   7篇
  1981年   25篇
  1980年   23篇
  1979年   1篇
  1978年   5篇
  1977年   1篇
  1976年   7篇
排序方式: 共有10000条查询结果,搜索用时 173 毫秒
571.
Nonlinear behaviors of a free-floating body in waves were experimentally investigated in the present study. The experiments were carried out for 6 different wave heights and 6 different wave periods to cover a relatively wide range of wave nonlinearities. A charge-coupled device (CCD) camera was used to capture the real-time motion of the floating body. The measurement data show that the sway, heave and roll motions of the floating body are all harmonic oscillations while the equilibrium position of the sway motion drifts in the wave direction. The drift speed is proportional to wave steepness when the size of the floating body is comparable to the wavelength, while it is proportional to the square of wave steepness when the floating body is relatively small. In addition, the drift motion leads to a slightly longer oscillation period of the floating body than the wave period of nonlinear wave and the discrepancy increases with the increment of wave steepness.  相似文献   
572.
This study investigates atmospheric responses to the directions of surface wind over the Kuroshio front in the East China Sea, using wintertime satellite-derived data sets. Composite maps of sea surface temperature, wind speed, precipitation, turbulent heat flux, surface wind divergence, and the curl of wind vectors above the atmospheric boundary layer are depicted based on the classification of intense northeasterly (along the front) and northwesterly (across the front) winds over the East China Sea. When northeasterly winds prevail, considerable precipitation occurs on the offshore side of the Kuroshio front, in contrast to periods when northwesterly winds prevail. First, the northeasterly winds strengthen above the front because of the downward transfer of momentum from the fast-moving air at higher levels and/or an adjustment of sea level pressure over the oceanic front, although the process by which the influence of the Kuroshio penetrates beyond the marine atmospheric boundary layer remains unclear. Second, a cyclonic vortex forms above the marine atmospheric boundary layer (at 850-hPa height) on the offshore side of the front, and thereafter, surface wind convergence via Ekman suction (hence, enhanced precipitation) occurs over the East China Sea shelf breaks. The northeasterly winds blow over the East China Sea when the Aleutian Low retreats to the east and when high sea level pressure covers the northern Sea of Japan.  相似文献   
573.
Direct current measurements by a shipboard and bottom-mounted acoustic Doppler current profiler and concurrent hydrographic observations with a CTD were conducted off southeastern Hokkaido, Japan, between January and May 2005 to reveal temporal variations in the current structure and volume transport of the Coastal Oyashio (CO). The CO, which has a baroclinic jet structure with southwestward speeds exceeding 90 cm s?1 and a width of 7–8 km, was associated with a surface-to-bottom density front and was formed on the offshore side of the shelf break. The volume transport of CO (T CO) was estimated by integrating the fluxes of lower-density water that was trapped against the coast along the density front represented by the 26.2 σ θ isopycnal line. This transport decreased monotonously from 0.79 Sv (1 Sv = 106 m3 s?1) in January to 0.21 Sv in March and subsequently to 0.12 Sv in May, possibly due to the decay of the East Sakhalin Current Water in the Okhotsk Sea. Accompanied by a decrease in T CO, the location of the jet structure associated with the density front moved toward the coast while the maximum speed of the jet decreased and the tilt of the front became more horizontal. Consequently, more saline offshore Oyashio water flowed into the deep part of the shelf area, and the current structure altered from relatively barotropic in winter to baroclinic in spring. This study is the first to estimate the observed volume transport of the CO from direct current measurements.  相似文献   
574.
Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV’s heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.  相似文献   
575.
This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.  相似文献   
576.
Variations of angular velocity of a rotating star on the upper main sequence due to mass loss driven by various mechanisms, like radiation, corpuscule ejection, and stellar wind, are examined. Expressions for the variations of angular velocity are derived by considering a model of a rotating star. The theoretical results show that the angular velocity decreaseswith time due tomass loss. The obtained results are applied to a hot fast-rotating star V1182 Aql (O9 V) and to Y Cyg (B0 V).  相似文献   
577.
The Fengjia barite–fluorite deposit in southeast Sichuan is a stratabound ore deposit which occurs mainly in Lower Ordovician carbonate rocks. Here we present results from fluid inclusion and oxygen and hydrogen isotope studies to determine the nature and origin of the hydrothermal fluids that generated the deposit. The temperature of the ore‐forming fluid shows a range of 86 to 302 °C. Our detailed microthermometric data show that the temperature during mineralization of the fluorite and barite in the early ore‐forming stage was higher than that during the formation of the calcite in the late ore‐forming stage. The salinity varied substantially from 0.18% to 21.19% NaCl eqv., whereas the density was around 1.00 g/cm3. The fluid composition was mainly H2O (>91.33%), followed by CO2, CH4 and traces of C2H6, CO, Ar, and H2S. The dominant cation was Na+ and the dominant anion Cl, followed by Ca2+, SO42‐, K+, and Mg2+, indicating a mid–low‐temperature, mid‐low‐salinity, low‐density NaCl–H2O system. Our results demonstrate that the temperature decreased during the ore‐forming process and the fluid system changed from a closed reducing environment to an open oxidizing environment. The hydrogen and oxygen isotope data demonstrate that the hydrothermal fluids in the study area had multiple sources, primarily formation water, as well as meteoric water and metamorphic water. Combined with the geological setting and mineralization features we infer that the stratabound barite–fluorite deposits originated from mid–low‐temperature hydrothermal fluids and formed vein filling in the fault zone.  相似文献   
578.
579.
The coastal marine atmosphere adjacent to large urban and industrial centers is in general strongly impacted by pollution emissions, resulting in high loading of pollutants in the ambient air. Among the airborne substances are certain trace elements from a variety of emission sources that can serve as micronutrients to marine organisms in coastal waters. High concentrations of such elements in coastal air can result in enhanced air-to-sea deposition fluxes to coastal waters. They could also be transported over the open ocean, affecting the composition of the remote marine atmosphere and then ocean ecosystems. To provide better understanding of the extent of air-to-sea deposition processes on the New Jersey coast, a heavily polluted coastal region on the US East Coast, a synthesis of observation data was carried out for selected trace elements, including Fe, Cd, Cr and Cu, derived from measurements of both size-segregated and bulk aerosol particles, as well as precipitation around the New Jersey coast. The atmospheric input of Hg was also estimated based on measurement data. Results indicated that the total deposition fluxes of most trace elements were higher in Northern coastal NJ compared to Southern coastal NJ, reflecting the differences in the source strengths of these element emissions between the two coastal regions. Dry deposition processes were more significant for common dust-derived elements, particularly Fe and Al, compared with their wet deposition fluxes. However, the processes of precipitation scavenging appeared to be more important for the elements that were often enriched in fine particles including Zn, Cu, Pb and Ni. The removal of Hg from the ambient air was overwhelmingly dominated by atmospheric wet deposition. In the future, atmospheric measurements at more sites on the NJ coast should be performed simultaneously to reduce the spatial and temporal uncertainties associated with atmospheric deposition fluxes estimated in this study.  相似文献   
580.
Marine chemistry of the coastal environment starts with principles of rock weathering that use carbonic acid to mobilize elements, only some of which comprise the majority of sea salt. The principle reason is reverse weathering, extensively represented in coastal waters, and returns most elements to newly formed colloids or minerals while recycling carbon dioxide to the atmosphere. This includes the deeper ocean expanse of sediment diagenesis, plus hydrothermal plumes and attendant low-temperature basalt alteration. Within the estuarine and extended shelf regimes, both conservative and non-conservative processes can be distinguished and modeled to determine proportions of weathered elements transmitted to the sea or consumed by reverse weathering. Conceptually, the steady-state processes that lead to the composition of seawater can be viewed as heterogeneous equilibria between dissolved constituents and solid mineral products taking hundreds of millennia. However, initial processes in the estuarine and coastal environment are characterized by shorter term scavenging associated with inorganic and organic colloids. These recycle both carbon and trace elements on timescales commensurate with estuarine flushing and coastal exchange with the ocean. The natural uranium and thorium decay series provide powerful tools for quantifying the rates of estuarine processes, including those within groundwater and the subterranean estuary. In the future, new mass spectrometric and nuclear magnetic resonance techniques will help to define the molecular nature of newly formed estuarine colloids as has been done for dissolved organic matter. As the coastal environment undergoes the forces of climate change in the form of warming and sea level rise, future research should address how these will impact chemistry of the coastal environment as a net source or sink of carbon dioxide and associated organic material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号